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Preface 

 
“Reason and free enquiry are the only effectual agents against 
error.” 
−  Thomas Jefferson, Notes on the State of Virginia, 1784 

 

This book is the second draft of an attempt to bridge the conceptual gap between classical and 
modern physics. According to classical reasoning space is Euclidean, time is independent of 
position, light waves must travel through a material aether, and dynamical systems are 
deterministic. Modern physics asserts that space is curved, time is dependent on position and 
velocity, and fundamental physical processes are probabilistic. It is almost universally believed 
that experimental and theoretical developments of the 20th century not only disproved specific 
classical models, but in fact eliminated the possibility that any mechanistic model could properly 
describe nature. The title of this book will likely seem self-contradictory to physicists 
accustomed to a clear separation between classical and quantum physics.  However, the reader 
will see that mechanistic models can in fact be used to explain fundamental physical phenomena 
that have hitherto been supposed to be beyond the realm of classical physics.  
In accordance with common usage, I use the term ‘classical physics’ to refer to any mechanistic 
description of natural phenomena which presumes the existence of continuous media, Euclidean 
space, and absolute time. The title of this book refers to new applications of classical ideas and 
not to antiquated theories of the past. 

I offer two arguments for consideration of mechanistic models of fundamental physical 
phenomena. The first reason is that in spite of past failures, it is still possible that a suitable 
mechanistic model can be found. Before classical physics can be rejected altogether, it must be 
proven that all mechanistic models yield predictions inconsistent with observations of nature. 
Since the number of possible mechanistic models is infinite, it is impossible to reject all of them 
unless they can be proven to share some incorrect feature. As the reader will see, features that 
have been presumed to fit this criterion have been incorrectly interpreted. 
The second reason for studying mechanistic models of the universe is simply to build intuition. 
One can hardly expect to master the subtleties of matter waves or quantum fields in the 
mysterious vacuum without first being able to understand the behavior of undulations in a simple 
elastic solid. Yet this is precisely the limitation under which physicists have labored for the past 
century. 

Historically, mechanistic models have figured prominently in the progress of physics [see e.g. 
Whittaker 1951]. The “rotationally elastic” aether introduced by James MacCullagh in 1839 
provided a mechanistic model which was consistent with all of the known properties of light 
including polarization, reflection and refraction, and crystal-optics. William Thomson (Lord 
Kelvin) described how such a mechanical medium could be made. Joseph Boussinesq achieved 
similar success in 1867 by assuming an ordinary elastic solid aether that permeates matter as 
well as empty space. James Clerk Maxwell’s historic formulation of the equations of 
electromagnetism in the early 1860’s relied on a mechanical model of the aether consisting of 
elastic cells interspersed with rolling particles.  
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This last example is particularly significant in light of the rise of relativity theory at the 
beginning of the 20th century. The Lorentz transformations relating spatio-temporal coordinates 
of observers in relative motion are widely believed to be inconsistent with classical notions of 
space and time. Yet Maxwell’s equations, which are covariant with respect to Lorentz 
transformations, were derived from a classical mechanical model. How can a classical model of 
a mechanical aether be consistent with the Principle of Relativity? This book answers this 
question by showing that the laws of Special Relativity are a consequence of the wave nature of 
matter. 

With respect to quantum mechanics, virtually all students are introduced to the subject via study 
of the non-relativistic Schrödinger equation. This equation not only violates the principle of 
relativity, but it also reduces the four-component Dirac spinor of modern quantum theory to a 
single scalar variable. Simply put, the non-relativistic Schrödinger equation preserves some of 
the math but discards all of the physics. One should not expect that physical interpretations of 
Schrodinger’s equation are applicable to real natural systems. Recent advances in classical 
physics have led some physicists to declare ”our present thinking about quantum mechanics is 
infested with the deepest misconceptions” [Gull et al 1993]. This book attempts to dispel such 
misconceptions by seeking clear, mechanistic explanations of natural phenomena.  In this book 
the coupled equations describing an electron are derived from a simple model and interpreted 
quite naturally as a description of the propagation of classical waves carrying angular 
momentum. The ‘wave-particle duality’ of matter is explained by the fact that massive particles 
are soliton waves (localized oscillations). 
This book is written at the level of a second- or third-year university physics course. It is 
assumed that the reader has already studied the basic properties of waves, is familiar with 
physical conservation laws, and has at least a basic understanding of wave analysis using Fourier 
transforms. 
This book addresses several basic physics questions. Some examples are: 

“What rotational motion is associated with spin angular momentum?” 
“Can angular momentum be defined independently of the choice of origin?” 
“What is the dynamical interpretation of a spinor?” 
“Why are many aether models (including Maxwell’s) consistent with Special Relativity?” 
“Why do matter and antimatter behave like mirror images of each other?” 
“Why is gravity so much weaker than other forces?” 
“How do waves propagate in an elastic solid?” 

The term "matter" is used in the most general sense, including all manifestations of energy and 
not merely those with mass. Since photons can combine to form electrons and positrons, it is 
clear that massive and non-massive particles should be regarded as different modes of a single 
physical phenomenon. The term "inertial density" is used in place of "mass density" in the model 
of the vacuum since "mass" is a property of matter rather than a property of the vacuum itself. 

Most of the historical information in this book has been gleaned from the excellent work of Sir 
Edmund Whittaker, A History of the Theories of Aether and Electricity, Vols. I and II (New 
York: Philosophical Library 1951 and 1954, respectively). The short synopses presented here are 
not intended to be complete in any sense. They simply provide a historical context from which 
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certain questions about the nature of matter arose and were answered. Numerous significant 
contributions have necessarily been omitted for the sake of brevity. 

Richard Feynman once remarked that if he could explain his work to the average person it 
wouldn't have been worth a Nobel Prize. However, Einstein’s view was that “you do not really 
understand something unless you can explain it to your grandmother.” This author agrees with 
Einstein, and I hope that this book will help physicists to understand nature in a manner that can 
be meaningfully shared with the rest of humanity. 

− Robert Close 

Portland, 2014 
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Glossary 
 
a displacement vector 
A magnetic vector potential 
B magnetic field 
ije  strain tensor 

E electric field 
ε  energy density 
F force 
φ  rotation angle 
Φ  potential energy or electric potential 
H Hamiltonian 
H  Hamiltonian density 
i  scalar unit imaginary 
i~  pseudoscalar unit imaginary 

sj L +=  angular momentum density (orbital + spin) 
SLJ +=  angular momentum (orbital + spin) 

J electrical current density 
k wave vector 
K kinetic energy 
L  orbital angular momentum density (associated with wave 

propagation) 
L orbital wave angular momentum 
L Lagrangian 
L  Lagrangian density 
0m  rest mass 

µ  elastic shear modulus 
p wave momentum (density) 
P momentum 

uq ρ=  momentum density of medium 
q electric charge 
Q angular potential 
Q!  spin angular momentum 
r position vector 
ρ  inertial density 
s spin angular momentum density (associated with rotations of 

medium) 
S spin angular momentum 
τ  torque density 
T torque 
Θ  rotation angle 
u medium velocity 
U potential energy 
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v particle or wave velocity 
( ) 2uw ×∇=∂∂= tΘ  vorticity (angular velocity) of medium 

ω  angular frequency 
ω  angular velocity 

iii x∂Θ∂=Ω  torsion component 
Θ⋅∇  scalar torsion 

ξ  coordinate variable 
ψ  Dirac bispinor wave function 
 
There may be exceptions to the above definitions, but I have tried to keep them to a minimum. 
 
References 
 
Gull S, Lasenby A, and Doran C 1993 Imaginary Numbers are not Real - the Geometric Algebra 

of Spacetime  
Whittaker E 1951 A History of the Theories of Aether and Electricity, vol. 1 (Edinburgh: Thomas Nelson 
and Sons Ltd.) 
Whittaker E 1954 A History of the Theories of Aether and Electricity, vol. 2 (Edinburgh: Thomas Nelson 
and Sons Ltd.) 
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Chapter 1. Review of Classical Physics 
 

If you would be a real seeker after truth, you must at least once in 
your life doubt, as far as possible, all things. 
− René DesCartes, Discours de la Méthode (1637). 

 

1.1. Basic Ideas 
All of physics is either impossible or trivial. It is impossible until 
you understand it, and then it becomes trivial.  
− Ernest Rutherford 

 
 Progress in science arises from attempts to conciliate observations and predictions. First, 

a phenomenon is described in detail on the basis of observations or measurements. Second, a set 
of scientific principles, or laws, is invented to explain the observations. This set of laws is called 
a theory. A scientific theory must be capable of yielding verifiable predictions (otherwise the 
theory is not scientific, though it might still be correct). Sometimes multiple theories yield the 
same predictions of observed phenomena, in which case the simplest theory is considered to be 
the best (Ockham’s razor). It often happens that a theory predicts phenomena that have not yet 
been observed and described. This leads to renewed efforts of observation and description. If 
new observations are not completely explained, then the cycle of prediction and observation is 
repeated.  

 

 
 

Figure 1.1 Aristotle (circa 384-322 BC) Figure 1.2  Aristotle’s Universe 
 

    
A classic example of this process is the development of the law of gravity on the basis of 

astronomical observations. The motion of stars and planets has been observed and studied since 



 

 
12 

the dawn of human civilization. A mechanical basis for these motions was described by Aristotle 
[Figure 1.1] around 350 BC in his treatise “On the Heavens”. Aristotle supposed the heavens to 
consist of concentric spheres into which celestial objects were affixed [Figure 1.2]. The outermost, 
or primary, sphere contained a multitude of stars. Other spheres contain only a single celestial 
object (sun, moon, or planet). The spherical earth was at the center (though the Pythagoreans 
believed otherwise). This model provides a good explanation of the motion of distant stars 
(which we now attribute to earth’s rotation), but offers no physical explanation for the apparent 
irregular motion of planets with respect to the earth. 

 

 
           Figure 1.3  Ptolemy (AD 127-145) 

 
An improvement on Aristotle’s model of heavenly motion was reported by Claudius Ptolomaeus 
(Ptolemy) [Figure 1.3] in the second century A.D. Ptolemy’s model [Figure 1.4] shifted the earth 
from the center of each orbit to a point called an eccentric, which was coupled with an equant 
point off-center in the opposite direction. Circular motion was attributed to rotation of a sphere, 
called a deferent. Non-circular motions were modeled by additional spheres, called epicycles, 
rotating about points on the deferent. Apollonius of Perga (Pergaeus) had proven that elliptical 
motion could be described in this way. Further corrections to this model were made by placing 
epicycles on epicycles. In principle, any periodic motion could be described by successive 
perturbations of this model. However, the complexity of this method reportedly led King 
Alfonso X of Spain to complain, “If the Lord Almighty had consulted me before embarking upon 
creation, I should have recommended something simpler.”  
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Figure 1.4  Example of elliptical (first epicycle) and retrograde (second epicycle) orbits produced using 
epicycles. 

       
Nicolaus Copernicus [Figure 1.5] simplified this model in 1514 by reasoning that the sun, 

rather than the earth, is at the center of the rotating spheres [On the Revolutions of the Celestial 
Spheres]. This new theoretical development reduced the number of epicycles necessary to 
compute planetary motion. In particular, the apparent retrograde motion of planets was made 
consistent with regular circular orbits.  

 

 
              Figure 1.5  Nicolaus Copernicus (1473-1643) 

 
In 1605, Johannes Kepler [Figure 1.6] eliminated the need for multiple epicycles by 

placing planets in elliptical orbits with the sun at one focus of the ellipse, rather than at the 
center. He also deduced that a line from the sun to a planet sweeps out equal areas in equal times, 

Deferent 

Celestial 
Object 

First 
Epicycle 

Second 
Epicycle Equant 

Center 

Earth 



 

 
14 

and that the square of the orbital period of a planet is proportional to the cube of the length of the 
semi-major axis.  

 

  

Figure 1.6  Johannes Kepler (1571-1630)                            Figure 1.7  Isaac Newton (1643 - 1727) 
 
                   

Kepler’s three laws of planetary motion greatly simplified the computation of planetary 
orbits. Nonetheless, Isaac Newton [Figure 1.7] found an even simpler principle to explain the 
orbits. Each planet is attracted to the sun by a gravitational force proportional to the inverse 
square of the distance from the sun. This gravitational force not only explained planetary motion, 
it also explained the attraction of terrestrial objects toward the earth. Yet as ever more accurate 
measurements were made, even this elegant theory did not explain all of the planetary motions. 
In particular, the perihelion of the orbit of Mercury advanced at a rate which could not be 
explained by the influence of other planets. 

Albert Einstein’s theory of general relativity finally explained these anomalies of 
planetary motion [Figure 1.8]. In this theory a gravitational field is proportional to a gradient in 
the speed of light (this property of general relativity is discussed in Chapter 4), which is reduced 
by the presence of energy. The theory also predicts that light waves from distant stars refract 
toward massive objects such as the sun or planets. This prediction has been verified by 
measuring, during solar eclipses, the positions of stars whose light propagates close to the sun on 
the way to earth. Near black holes, the refraction is so strong that the light cannot escape. 
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                Figure 1.8  Albert Einstein (1879 – 1955) 

 
Thus the complicated clockwork of Ptolemy’s spheres has been replaced by the physical 

principle that gravity results from the presence of energy in space. 
Modern physics now has its own version of Ptolemy’s spheres in the realm of particle 

physics. An empirical method, quantum field theory, has been found to accurately compute 
statistical outcomes of experiments.  The method works but it relies on myriad empirical 
constants and has defied explanation as to why nature should behave this way. Like Ptolemy’s 
spheres with epicycles on epicycles, predictions of quantum field theory are computed using 
successive approximations or perturbations. Each correction is represented by a Feynman 
diagram, which is interpreted as representing an interaction of elementary particles [Figure 1.9]. A 
“renormalization” procedure adjusts interaction strengths in order to produce the correct final 
results.  

 
Figure 1.9  Renormalization in quantum electrodynamics: An interaction between two electrons (e−) is 

modeled from left by (1) “virtual” photon (γ  ) exchange, (2) additional intermediate creation and destruction 
of electron-positron pair (e−,  e+), and (3) additional virtual photon (γ  )  exchange.  Additional processes 

contribute ad infinitum to the interaction. 
 

 
In the case of Ptolemy’s spheres, the difficulties arose because astronomers lacked an 

understanding of gravity and attempted to describe celestial orbits in terms of circular motion. 

Time 

Space 

e− e− 

γ e− 

e+ γ 
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The method was sufficient at the time for its purpose of predicting future positions of celestial 
objects in the sky. Its major flaw was unnecessary complexity. Each planet had its own set of 
epicycle parameters to define the orbit. Newton’s (and later Einstein’s) theory of gravity unified 
all celestial orbits under a single physical principal dependent only on the masses of the objects 
in the sky. 

In modern theories of elementary particles, each type of particle is assigned a unique set 
of parameters (mass, spin, isospin, electric charge, weak charge, strong charge, etc.). In fact, 
each particle has its own equation of evolution, which includes interactions with other particles. 
The catalog of elementary particles and their associated constants, in combination with the 
computational methods of quantum field theory, is called the Standard Model of particle physics. 
The Standard Model has proven to be extremely accurate in every case which has been tested. Its 
flaw is not inaccuracy but complexity. Equations for basic physical quantities such a angular 
momentum have no single representation but are dependent on which particles are present in 
space. Quantum numbers called “up”, “down”, “strangeness”, “beauty”, “charm”, and “truth” 
have been invented to differentiate particles on the basis of unexplained properties. Simple 
physical questions such as “What rotation is associated with ‘spin’ angular momentum?” are left 
unanswered. No rationale has ever been accepted to explain why particles should exhibit the 
wave-like characteristics that are observed in experiments. And gravity has no obvious relation 
to the Standard Model.  

Elementary particles, despite the name, are not immutable. For example, two photons can 
collide and transform into an electron-positron pair. The inverse transformation is also possible. 
Thus it is obvious that photons, electrons, and positrons are not truly “elementary” particles but 
instead represent different states of a shared physical process. Other particles undergo similar 
transformations of identities. Hence there is reason to believe that all elementary particles are 
different manifestations of a single physical process, and might be described as modes or 
perturbations of the vacuum. 

The premise of this book is that the conceptual difficulties of quantum theory arise 
because physicists attempt to describe matter as discrete independent particles rather than as 
continuous waves.  We will derive the basic dynamical and statistical properties of matter from a 
simple wave model, with massive particles interpreted as soliton waves. However, we will not 
derive the numerical predictions of the theory as this remains an unsolved problem. 

Our topics will include special relativity, particle propagation, interactions, spin, 
statistics, and gravitational attraction. The reader is assumed to have prior understanding of wave 
processes at the undergraduate level. Readers of this book will become acquainted with the 
mathematics of quantum mechanics and relativity. They will then be free to further their 
understanding of modern physics either by further classical analysis or by more traditional 
avenues of study. We begin with a review of classical physics.  

1.2. Classical mechanics 
Truth is by nature self-evident. As soon as you remove the cobwebs 
of ignorance that surround it, it shines clear. 
− Mohandas Gandhi 

 
Classical mechanics typically begins with Newton's laws of motion: 

(1) an object in motion moves in a straight line at constant speed unless a force acts upon 
it (momentum p=constant if force F=0) 
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(2) An object's momentum changes at a rate proportional to the force on the object 
(F=dp/dt) 

(3) Any action on an object results in an equal and opposite reaction from the object. In 
other words, the force ( BF ) which object A exerts on B is equal and opposite to the 
force  ( AF ) which B exerts on A. 

 
Actually, the first and third 'laws' can be regarded as special cases of the second law. The first 
law simply describes the case of zero force: F=0. The third law can be derived from the second 
simply by considering the combination of two objects A and B as a single 'object'. In the absence 
of external forces (F=0) the first law requires that the total momentum is constant=+ BA pp . 
Taking the time derivative yields: 
 

0=+
dt
d

dt
d BA pp

 (1-1) 

This implies that any change in momentum of object A must be accompanied by an equal and 
opposite change in momentum of object B. The third law is obtained by substitution of forces for 
the rates of change of momenta. 
Angular momentum L is defined as the cross product of the momentum with a displacement 
vector r: 

prL ×=  (1-2) 

The integral of force times displacement is called work: 

 rF dW ⋅∫=  (1-3) 

This is the change in mechanical energy which results from application of a force. In differential 
form, this relation can be written as: 

F=∇W  (1-4) 
In the case of a force applied to a solitary object, Newton's second law of motion yields: 

dt
dW p

=∇
 (1-5) 

Note that the work performed in accelerating an object is energy which is transferred to the 
object. If we are discussing a reservoir of 'potential' energy U which is depleted to accelerate on 
object (or increased by deceleration), then we need a minus sign: 

dt
dU p

−=∇
 (1-6) 

1.2.1. Conservation Laws 
 

In a closed system, i.e. one for which we include all sources of force, the total force must 
be zero, and therefore the total momentum is constant. This law is known as conservation of 
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momentum. A more abstract line of reasoning for momentum conservation goes like this: If an 
object (or group of objects) were to exert a net force on itself (themselves), then the energy of the 
object would depend on position. One would have to do work to move the object against the self-
force. Conversely, if energy is independent of position then there is no self-force and momentum 
is conserved. With this line of reasoning, the law of momentum conservation follows from the 
assumption that energy is independent of position. This is an example of a physical symmetry.  
 

 
Figure 1.10  Emmy Noether (1882-1935) 

 
The mathematician Emmy Noether [Figure 1.10] proved that each symmetry in a physical 

system implies the existence of a conserved quantity [Noether 1918, Goldstein 1980]. The 
converse is also true. Some familiar symmetries and the corresponding conserved quantities are: 
 
Symmetry     Conserved Quantity 
 
translation     momentum 
rotation     angular momentum 
time shift     energy 
spatial inversion    parity 
 

The last of these may be new to some readers. Parity is the factor (P) which accompanies 
inversion of spatial coordinates ( xx −→ ). The coordinate variables themselves obviously have 
negative parity (P=−1). Momentum and velocity also have negative parity. Spatial inversion is 
equivalent to mirror imaging followed by a 180º rotation about the coordinate axis perpendicular 
to the mirror. Hence a top spinning clockwise has a spatially inverted image which also spins 
clockwise. Therefore angular momentum has positive parity (P=+1). More importantly, the 
equations governing angular momentum are not changed in the coordinate-inverted system (e.g. 

prL ×= ). In other words, the equation for angular momentum is symmetric with respect to 
coordinate inversion. Parity conservation implies that the equations describing a physical system 
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are symmetric (unchanged) under coordinate inversion. Since coordinate inversion exchanges 
left- and right-handedness, it could also be labeled 'handedness conjugation'.  

Intuitively, what we see in a mirror seems just as physically realistic as what we see 
directly, so before the mid-1950’s scientists generally assumed that parity is conserved in 
elementary physical processes (though not macroscopically since some molecules such as DNA 
are found exclusively in their right-handed form in nature). However, experiments have shown 
that certain physical processes are intrinsically left- or right-handed for certain particles. If the 
particles themselves (e.g. protons, neutrons, and electrons) are assumed to be their own mirror 
image, then these results imply parity violation in physical laws and not just in asymmetrical 
distributions of left- and right-handed objects. 

Interestingly, all anti-matter particles behave exactly like mirror-images of matter. The 
simplest explanation of this mirror-symmetry is of course that anti-matter is the mirror-image of 
matter. Strangely, mainstream physicists have rejected this simple explanation because it is 
inconsistent with theoretical assumptions about how to calculate mirror images of quantum 
mechanical wave functions. We will address this issue in Chapter 3. 

1.2.2. Spin 
The term spin has two meanings in physics. The first meaning is the ordinary one, 

namely rotation about a local axis. If a rigid top, with center of mass 0r  and intertial moment I, 
rotates with angular velocity sω  about its own axis and also moves with momentum p along a 
straight line, then the angular momentum of the spinning top is: 

SLωprJ +=+×= sI0  (1-7) 

The first term is sometimes called the ‘orbital’ angular momentum and the second term is 
called the spin angular momentum. However, this separation is somewhat artificial since the spin 
angular momentum for a top with uniform mass density ρ  can also be written as: 

( ) ( )∫ ×−= rrvrrS 3
0 dρ  (1-8) 

which has the same form as the orbital angular momentum. In quantum mechanics, the spin 
angular momentum is not explicitly related to rotational motion (this may be either a feature of 
nature or the result of our ignorance about nature; we will argue for the latter). 

The second meaning of spin relates to the transformation of variable components under 
rotations. In this context the spin is the ratio of 2π  radians divided by the angle between 
independent states. A scalar field is described at each point in space by a single number 
independent of orientation. Therefore scalar fields have spin zero (infinite angle between 
independent states). A vector field is described at each point in space by three independent 
components with an angular separation of 2π  radians between any pair of independent 
components (e.g. coordinate axes). Therefore a vector field has spin one. A vector A transforms 
under local infinitesimal rotation φδ  as: 
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φ

φδδ
 (1-9) 



 

 
20 

Note that rotation of A by φδ  is equivalent to rotation of the coordinate axes by φδ− . For 
example, the components transform under rotation of the z-axis as: 
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The differential form of this equation is: 
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The minus sign is separated from the matrix by convention. The matrix ( )1
zσ  is called a spin 

matrix, and can be regarded as one of three components of a spin vector: 
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The superscript (1) is used to distinguish these spin-1 matrices from other matrices introduced 
later. Using these matrices the differential change in the vector A undergoing arbitrary rotation 
is; 
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 (1-13) 
The final form simply lists the components of the curl operator: 

AA ×= φδδ  (1-14) 
 The above analysis is for rotation about a local axis, i.e. in coordinates with r=0. For rotation 
about an arbitrary axis we must include the effects of the change in r due to rotation: 

( ) ( ) ( )ΑσArAArAArA ⋅+∇×⋅−=×+∇⋅×−=
∂

∂
⋅−∇⋅−= φφφ
φ

φ δδδδδδδ φ
 (1-15) 

In the final form above the first term is called the ‘orbital’ component and the second term the 
‘spin’ component of the rotational transformation. 
 Of special interest is the case where the dynamical angular momentum J is itself 
expressed as a rotational transformation. We will see below that the dynamical angular 
momentum can be expressed as a derivative of a scalar ( L ) with respect to angular velocity: 
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φ!∂
∂

=
LJ

 (1-16) 

In this case there is no distinction between the two definitions of ‘spin’.  Although a scalar has 
spin of zero, we will see that nonzero ‘spin’ does arise when the function L is expressed in terms 
of other variables. 
 

1.3. Variational Methods 
An error does not become truth by reason of multiplied 
propagation, nor does truth become error because nobody sees it. 
− Mohandas Gandhi 

 
 For simple systems it is easy to derive equations of motion simply by determining the forces 

and applying Newton’s law (F=ma). However, in many situations such an analysis can be rather 
tedious. Instead, physicists have developed variational methods which utilize energy rather than 
force. The basic idea of variational methods is that while the true evolution of the system 
satisfies a certain equation, other fictitious evolutions can be parameterized by their differences, 
or errors, from the true equation. The correct equation of evolution can then be regarded as the 
one which minimizes these errors. 

Consider, for example, a ball moving through the air under the influence of gravitational 
force: 

Fp
=

dt
d

 (1-17) 
In moving between arbitrary points A and B, the equation of motion can be integrated: 
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Wdd
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Δ=∫ ⋅=∫ ⋅ lFlp

 (1-18) 

where we have identified the right-hand side with the work done by the force acting on the ball. 
Rearranging yields: 

0=Δ−∫ ⋅ AB
B

A
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d lp

 (1-19) 

Writing the path length in terms of velocity ( dtd vl = ) yields: 

0=Δ−∫ ⋅ AB

t

t
Wdt

dt
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 (1-20) 
For a ball of mass m, the momentum is vp m= and the equation reduces to: 

( ) 0
2
1

=Δ−∫ ⋅ AB
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Wdt
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vv
 (1-21) 

The first term represents the change in kinetic energy K, so we have: 
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0=Δ−Δ ABAB WK  (1-22) 

This equation expresses conservation of energy. Defining a potential energy U as the source of 
work ( WUU −= 0 ): 

constant==+ EUK  (1-23) 
where E represents the total energy.  

 The equation of motion results from minimization of the difference between kinetic and 
potential energy. Define the Lagrangian function as: 

( ) ( )rvr UmvL −= 2
2
1,

 (1-24) 
We require that the path integral be stationary (zero first order change) with respect to variations 
of the Lagrangian along the path: 
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 (1-25) 
Use the first-order expansion: 
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Integration by parts yields: 
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The endpoints are assumed fixed, so the first term is zero. The remaining integral must be zero 
for arbitrary changes ( )txiδ . This condition yields the Euler-Lagrange equation: 
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The quantity ii xLvL !∂∂=∂∂  is called the conjugate momentum (or momentum conjugate to the 
coordinate x). For the Lagrangian in (Error! Bookmark not defined.), the conjugate momentum 
is: 

i
i

i mv
x
Lp =
∂
∂

≡
!  (1-29) 

This is of course the usual definition of momentum.  
The energy may be obtained from the Lagrangian using the procedure: 

( ) ( )rvrvp UmvLE +=−⋅= 2
2
1,

 (1-30) 
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Using momentum and position as the independent variables, the functional form of the 
energy is called the Hamiltonian: 

( ) ( ) ( )rprpr U
m
pUKH +=+=
2

,,
2

 (1-31) 

The equation of motion is then: 

r
p

∂

∂
−=
H

dt
d

 (1-32) 
which couples nicely with the equation for velocity: 

p
r

∂

∂
=
H

dt
d

 (1-33) 

The variables r and p in this example are called conjugate variables.  
  
 

1.4. Wave Equations 
Evidence is better than theory (論より証拠). 
− Japanese proverb 

 
Historically, matter has been thought of in terms of discrete particles. When we look at scene we 
instinctively segment it into discrete objects. Yet it is now clear that on a subatomic level the 
behavior of matter is governed by wave-like equations. In general, waves are generated by the 
perturbation of a continuous medium which has two properties: (1) resistance to change or 
inertia, and (2) reactivity to change or restoring force.  

1.4.1. Elastic waves 
For example, consider displacements of a small region in the interior of a solid. Because 

the region contains mass, it has inertia. We call the density of inertia mρ . Newton's first law of 
motion states that the region will not change its motion unless acted upon by an external force. 
Because elements of a solid are bound together by an elastic attraction, any stretching will result 
in restoring forces which oppose the stretching [Morse and Feshbach 1953]. 

We will use the shorthand notation ( iit xt ∂∂=∂∂∂=∂ ; ) to denote derivatives of 
field variables. The total derivative is: 

φwu ∂∂⋅+∇⋅+∂= tdt
d

 (1-34) 

where u is the velocity and ( ) 2uw ×∇=  is the angular velocity of the medium. The inertial 
reaction ( IF ) to changes in the displacement a is given by Newton's second law: 

FI =
dp
dt

= ρm ∂tu+u ⋅∇u+ w ⋅∂ ∂ϕ( )u%& '(d
3r = ρm ∂t

2a+ !a ⋅∇!a%& '(d
3r  (1-35) 
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where we have used the differential mass rdm
3ρ .  The restoring force is the result of stress (or 

tension) in the medium. A clear derivation of the relation between stress and strain can be found 
in The Feynman Lectures on Physics, Vol. II [R. P. Feynman, Robert B. Leighton, and Matthew 
Sands, (Addison-Wesley, Reading, 1963), Chapter 39]. We will give only a summary here.  
The strain in a medium represents the rate (spatial derivative) at which local displacements 
deviate from an equilibrium position. For example, if an object is stretched from equilibrium in 
the x-direction by an amount ( )xax , the strain is given by: 

x
a

e x
xx ∂

∂
=

 (1-36) 
Note that if neighboring points are moved by the same distance (locally rigid displacement with 

0=∂∂ xux ) then there is no strain between those points. The first subscript indicates the 
direction of displacement. The second subscript indicates the direction of variation. If a region is 
rotated counterclockwise about the z-axis by an angle zθ , the displacements are: 
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 (1-37) 

The displacements can be written as: 
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 (1-38) 

Notice that for finite rotations the displacement has a divergence ( 0≠⋅∇ a ) even though the 
motion is incompressible [Figure 1.11].  
 

 
Figure 1.11  Diagram of half-displacements (a/2) for a 180°   rotation, demonstrating non-zero divergence. 

 

180 °  
Rotation 

a/2 
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Incompressible motion requires only that the velocity have zero divergence. Since we are 
attempting to compute stress (including compression) in terms of displacements, we are forced to 
limit rotations to be infinitesimal in order to avoid anomalous divergences. For small rotations 
the first-order expression is: 
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θ

≈

−≈

 (1-39) 

Of course, a pure rotation is rigid and does not introduce strain into the medium. This strain-free 
condition is satisfied if: 
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 (1-40) 

Shear strain comes about when the quantity above is not zero, and can be regarded physically as 
the deviation from rigid motion. The shear strain associated with rotations about the z-axis is 
defined as: 
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Note again that this quantity is zero for pure infinitesimal rotations, but not zero in general for 
finite rotations. Incidentally, the corresponding component of the rotation is approximated by: 
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 (1-42) 
We can compute the relative motion of neighboring points by combining the strain and rotation: 

ijij
j

i e
x
a

ω−=
∂

∂

 (1-43) 

So far we have defined three components of the strain tensor: xxe , xye , and yxe . Other 
components of this tensor are easily obtained simply by using the appropriate indices. 

The restoring forces which arise in response to strain are computed from a stress tensor 
( )ijS . The stress tensor contains the force per unit of oriented area which would result if a small 

block were cut out of the solid ( [ ] ikji dddA nxx ⋅×= ) but preserved its shape. For example, a 
positive value of xzS  means that the upper surface at (z+dz) would have a positive force in the x-
direction while the lower surface at z would have a negative force in the x-direction. If the 
stresses are equal at both surfaces then there is no net force. And when the block is inside the 
solid the surface forces are cancelled by forces on the adjoining surfaces, which differ only by 
the opposite orientation of area. However, if the stress is non-uniform then a net force per unit 
volume is given by the derivative of stress along the direction of variation: 
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∑
∂
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 (1-44) 
This expression is valid even when the block is placed back into the solid, since it is a force on 
the volume and not on the surface. Assuming a linear relation between stress and strain yields: 

∑=
lk

klijklij eCS
,  (1-45) 

The coefficients ijklC  are called the tensor of elasticity. In an isotropic solid there can be no 
direction dependence in the elasticity coefficients, so any material-dependent coefficients must 
be scalars. The first is called the shear modulus (µ) and is conventionally multiplied by two to 
yield the elasticity coefficient: 

ijij eS µ2~  (1-46) 

The second coefficient relates to compression. Compression is represented by ∑=⋅∇
k
kkeu  

The resulting stress is proportional to the compression and equal in all directions: 
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 (1-47) 

where the Kronecker delta is defined as 1=ijδ  if i=j and 0=ijδ  otherwise. The general 
expression for stress in an isotropic solid is therefore: 
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 (1-48) 

The presence of stress does not necessarily imply a restoring force. After all, we can stretch a 
rubber band and hold it still so that the net force on any element of the band is zero. Restoring 
forces arise when the stress is non-uniform: 
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Plugging in the expressions for ije  yields: 
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Or: 

[ ] [ ]a⋅∇
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i
ii x
aF λµµ 2

 (1-51) 
Multiplication by fixed unit vectors yields the vector form: 
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[ ] [ ]aaF ⋅∇∇++∇= λµµ 2
 (1-52) 

We could replace the first term using the vector identity: 

[ ] [ ]aaa ×∇×∇−⋅∇∇=∇2
 (1-53) 

to obtain: 

[ ] [ ] [ ]aaF ×∇×∇−⋅∇∇+= µλµ2  (1-54) 
Note that in this form the forces separate into a term which depends on divergence ( a⋅∇ ) and a 
term which depends on rotation ( )( )2a×∇≈θ . This form reinforces the physical interpretation 
of shear strain as the deviation from rigid rotation.  

Setting the restoring force equal to the inertial reaction yields the equation for 
displacement a in an elastic solid: 
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The dot product of angular derivatives may be written as a curl ([ ] yxz aa −=∂∂ ϕ , etc.): 
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The convection and rotation terms are usually (though not correctly!) ignored: 
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 (1-57) 
We will also neglect convection and rotation for now, but will discuss them later.  

1.4.2. Stress-Energy Tensor 
 
The potential energy density is (Morse & Feshbach p.322): 
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The Lagrangian for conventional elastic waves is given by: 
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Explicitly, this is: 
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 (1-60) 
The canonical momentum represents the momentum density of the medium: 
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The stress-energy tensor (or momentum-energy tensor) is defined as: 

( ) ij
ji

ij L
xa

L
x
a

W δ
α α

α −
∂∂∂

∂

∂

∂
=∑

 (1-62) 

The components may be written as: 
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The Hamiltonian represents the total energy: 

H =W00 =
∂aα
∂t

∂L
∂ ∂aα ∂t( )α

∑ − L = K +U  (1-63) 

The wave momentum density is given by: 

Pi = −Wi0 = −
∂aα
∂xi

∂L
∂ ∂aα ∂t( )α

∑ = −
∂aα
∂xi

ρ
∂aα
∂tα

∑  (1-64) 

The minus sign is necessary (but sometimes ignored!) because a wave moving in the positive x-
direction has time derivative opposite to the sign of the spatial derivative. Note that the direction 
of canonical momentum is determined only from the time derivative of displacement whereas the 
wave momentum also includes spatial derivatives. For shear waves the wave momentum is 
perpendicular to the direction of medium motion. 
 The wave intensity (I) also includes temporal and spatial derivatives, and represents a 
flow of energy: 
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Ii =W0i =
∂aα
∂t

∂L
∂ ∂aα ∂xi( )α

∑  (1-65) 

 
 The Euler-Lagrange equation is: 
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This equation can be simplified by rearranging terms: 
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 (1-68) 

Using the vector relation: 

[ ] [ ]aaa ×∇×∇−⋅∇∇=∇2  (1-69) 

yields the alternative form: 
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[ ] [ ] [ ]{ }∫ ×∇×∇−⋅∇∇+=∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂ aaa
µµλρ 22

2

t  (1-70) 
If we consider only shear waves: 
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∂

∂ aa
µρ 2

2

t  (1-71) 
It is interesting to note that this equation may also be derived from the Lagrangian: 
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⎛
∂
∂

= µρ
t

L
 (1-72) 

As a simple example, consider transverse plane waves propagating in the x-direction with 
displacement in the y-direction. The Lagrangian is: 

L = 1
2
ρ ∂tay( )

2
−
1
2
µ ∂xay( )

2#
$%

&
'(  (1-73) 

The Hamiltonian represents the total energy: 

H =W00 =
1
2
ρ ∂tay( )

2
+
1
2
µ ∂xay( )

2"
#$

%
&'  (1-74) 

The wave momentum density is given by: 

Px = −Wxt = − ∂xay( )ρ ∂tay( )  (1-75) 

Notice that a wave with opposite spatial and temporal derivatives has momentum in the positive 
x-direction.  

The wave intensity (I) is: 

Ix =W0 x = ∂tay( )µ ∂xay( ) = cw2Px  (1-76) 

where cw = µ ρ  is the wave speed. 
The Lagrangian for shear waves is essentially the form used by MacCullagh in 1837 to 

describe classical light waves. Empty space was modeled as a rotationally-elastic solid (called 
the aether). At the time, matter was thought to alter the density of the aether, so elimination of 
the compressional energy was thought necessary to prevent coupling to longitudinal waves at the 
interface. Later, Boussinesq proposed that the properties of aether were independent of the 
presence of matter, thereby allowing the aether to be regarded as an ordinary elastic solid. 

This concludes the conventional analysis of shear waves in an elastic solid. Next we will 
derive an expression for angular momentum density. 

 

1.4.3. Spin Angular Momentum Density 
 

Recall the conventional Lagrangian for shear waves: 
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( ) ( )[ ]22

2
1

2
1 aa ×∇−∂= µρ tL

 (1-77) 

The potential energy associated with shear waves can be interpreted as proportional to the 
square of the local rotation angle: 

( )[ ] 22 2
2
1

Θ≈×∇= µµ aU
 (1-78) 

This property suggests that shear waves may be described entirely by rotational variables.  
Consider a locally rigid rotation with velocity wrrwv ×−=×= , where w is the local angular 
velocity. This expression depends on the non-local quantity r. However, the relation between 
velocity and angular velocity can be written in a local form as wrv ×−= dd . For example, if w 
is in the z-direction then dxwdv zy =  and dywdv zx −= . Therefore 

( ) 2zxyz dydvdxdvw v×∇=−== . Hence the differential equation corresponding to 

wrv ×−=  is ( ) 2vw ×∇= .  
We desire a similar local spin angular momentum density whose curl is proportional to 

linear momentum. Based on the equation L = r×p , we would expect the relationship to be 
ρu = − 1 2( )∇× s . However, the angular momentum density must be the same sign as vorticity in 

order to have positive kinetic energy density 1 2( )w ⋅ s .  It must also fall to zero at infinity in 
order to have finite total angular momentum. These conditions require an angular momentum 
density maximal at the axis of rotation and decreasing with increasing radius. This requires 
ds ~ −dr×ρu , or: 

 ρu = + 1 2( )∇× s  (1-79) 

This sign is opposite to the expectation based on L = r×p , but may be understood in 
light of the fact that conventional angular momentum density is zero at the axis and increases 
outward, whereas our spin angular momentum density starts at zero at infinity and builds up 
inward. Similarly, the time derivative of this relationship implies that force and torque densities 
are related by: 

f = + 1 2( )∇× τ  (1-80) 

1.4.4. Rigid Rotation 
Consider a rigidly rotating cylinder of radius R. A consistent set of variables is: 

s = ẑρwz R
2− r2"# $% to r = R, then zero

u = 1
2ρ

∇× s = rwzϕ̂ to r = R, then zero

w = 1
2
∇×u = ẑ wz −wzRδ r − R( ) / 2"# $% to r = R, then zero

 (1-81) 

Notice that if we had defined urs ρ×=  then it would have z-dependent terms.   
Since we are using cylindrical coordinates: 
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 wz =
1
2
1
r
∂
∂r
rvϕ   

The vorticity is defined so that the velocity drops to zero at r=R: 

vϕ =
1
r

d !r 2 !r wz −wzRδ !r − R( ) / 2#$ %&0

r
∫ =

rwz for r < R
0 for  r > R

(
)
*

+*

,
-
*

.*
  (1-82) 

The total angular momentum per unit height is: 

S = sd3r∫ = 2πr dr∫ ρwz R
2 −r2#$ %&

= πρwz R
4 −

R4

2
#

$
'

%

&
(=

πρwzR
4

2
=
MR2

2
wz = Iwz

 (1-83) 

where I is the moment of inertia per unit height. 
The kinetic energy in terms of angular momentum density is: 

[ ] [ ]∫ ×∇⋅×∇=∫= rdrduK
m

m
332

8
1

2
1 ss

ρ
ρ

 (1-84) 

We can integrate by parts to express kinetic energy in terms of rotational variables, assuming that 
all derivatives are zero at infinity: 

K =
1
8ρm

∇× s[ ] ⋅ ∇× s[ ]d3r∫ = ∂is j∂is j −∂is j∂ jsi'( )*d
3r∫

= −
1
8ρm

sj∂i∂is j − sj∂ j∂isi'( )*d
3r∫ = −

1
8ρm

s ⋅∇2s− s ⋅∇ ∇⋅ s[ ]'( )*d
3r∫

=
1
8ρm

s ⋅ ∇× ∇× s[ ]{ }d3r∫ =
1
2
w ⋅ sd3r∫

 (1-85) 

Notice that this result requires w = 1 4ρm( )∇×∇× s , confirming our choice of sign in relating 
velocity u to angular momentum density s. 
For the rigidly rotating cylinder the total kinetic energy is: 

K =
1
2
w ⋅ sd3r∫ =

1
2

2πr drwz∫ ρwz R
2 −r2$% &'

= πρwz
2 R4
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'
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MR2

4
wz
2 =
1
2
Iwz

2
 (1-86) 

The delta function in vorticity does not contribute because the angular momentum density is zero 
there. 
 Notice that at a given point, kinetic energy density expressed in terms of vorticity is not 
equal to the kinetic energy density expressed in terms of velocity. In this sense any theory of spin 
angular momentum density is nonlocal. Spin angular momentum should be regarded as a 
potential that may be used to determine the local velocity. 
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1.4.5. Rotational Waves 
The elastic shear force equation: 

( ) ( )[ ] aau 2∇=×∇×∇−=∂ µµρt  (1-87) 

becomes: 

∂t ∇× s( ) = 2µ∇× ∇×a( ) = 4µ∇×Θ  (1-88) 

We can write the wave equation as: 

{ } 0=−∂×∇ τst  (1-89) 

where the torque density τ = −4µΘ is proportional to the local rotation. 
 
Now define a variable Q whose Laplacian is equal to the rotation angle (or orientation): 

Θ = −
1
4ρ

∇2Q  (1-90) 

We assume that the medium has a linear response to rotation, so that the torque is: 

τ = −4µΘ = c2∇2Q  (1-91) 

with ρµ=2c . 
 Therefore, for infinitesimally small motion (neglecting convection Qu !∇⋅ ), the variable 
Qs !≡  represents angular momentum density and we have: 

s ≡ ∂tQ

u = 1
2ρ

∇× s = 1
2ρ

∇× !Q

τ ≡ c2∇2Q

w = 1
2
∇×u = 1

4ρ
∇× ∇× !Q&

'
(
)

 (1-92) 

 
We also have for infinitesimal displacements: 

a ≈ 1
2ρ

∇×Q

Θ ≈
1
2
∇×a ≈ 1

4ρ
∇× ∇×Q[ ] ≈ − 1

4ρ
∇2Q

 (1-93) 

Equating the rate of change of intrinsic angular momentum density to the torque density 
yields a wave equation for Q: 
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QQ 22
2

2
∇=

∂

∂ c
t  (1-94) 

For infinitesimal motions, the curl of this equation is the familiar shear elastic force equation 
(with 0=⋅∇ a ): 

∇×
∂2Q
∂t2

− c2∇2Q
%
&
'

(
)
*
≈
∂2a
∂t2

− c2∇2a = 0  (1-95) 

This equation is more generally valid than the previous one. For example, a constant rigid 
rotation does not satisfy (1-94). However, (1-94) is sufficient for describing rotational waves. 

For infinitesimal displacements, the Lagrangian density in angular variables is: 

!L =
1
2
!θ ⋅ s− 2µθ 2  (1-96) 

This is the usual difference between kinetic and potential energy. In this expression we must 
regard s as a function of θ! . Therefore the conjugate momentum to θ  is the angular momentum 
density: 

p
Θ j
=
δL
δ !Θ j

=
1
2

δ
δ !Θ j

!Θ⋅ sd3r∫ =
1
8ρ

δ
δ !Θ j

∇× s[ ] ⋅ ∇× s[ ]d3r∫

=
1
8ρ

2 ∇× s[ ] ⋅ δ
δ !Θ j

∇× s[ ]d3r∫ = s ⋅ δ
δ !Θ j

!Θd3r∫ = sδ3 r( )d3r =∫ s r( )
 (1-97) 

where ( )r3δ  is the three dimensional Dirac delta function. 
The Euler-Lagrange equation is: 

( ) ( )iit θδ
δ

θδ
δ LL

=
∂
∂

!
 (1-98) 

which yields as above: 

∂
∂t
sp = −4µθ p  (1-99) 

As we saw above, the force equation corresponds to the curl of this equation. Although not 
completely general, this equation is valid for wave solutions. 

Now we need to include the effects of finite amplitude.  Finite velocity induces 
convection, and finite rotations can result in instantaneous rotations which are not parallel to the 
angular momentum. Adding these effects yields: 

QwQuQQ !! ×+∇⋅−∇=∂ 222 ct  (1-100) 

If we assume QQwQu 2M=×−∇⋅ !!  then we obtain a transverse Klein-Gordon 
equation: 

QQQ 2222 Mct −∇=∂  (1-101) 
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This yields the relativistic energy-momentum relation between eigenvalues: 
2222 MpcE +=  (1-102) 

Even if M=0, the convection and rotation terms may contribute significantly to the physical 
description of the wave. 
 We will discuss rotational waves further in Chapter 3. 
 

1.4.6. Electromagnetism 
 
The pinnacle of conventional physics was the development of a complete theory of 
electromagnetism in 1865 by James Clerk Maxwell [1891]. It was by then well understood that 
objects with electrical charge would attract if the charges were opposite and repel if the charges 
were the same sign. Accelerated charges resulted in the emission of electromagnetic waves 
which traveled at the same speed as light waves. Hence it was correctly deduced that light is a 
form of electromagnetic radiation. In modern notation Maxwell's equations can be written as:  

J
ctc
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 (1-103) 

where E is the electric field, B is the magnetic field, eρ  is the electric charge density, and J is 
the electric current density.  
 The force exerted by the fields on a particle with charge q and moving with velocity v is 
given by the Lorentz force law: 

⎥⎦

⎤
⎢⎣

⎡ ×+= BvEF
c

q 1  (1-104) 

For moving particles the current density is veρ=J . The fields E, B, eρ , and J  can be derived 

from potential fields A and Φ  as follows:  
 (1-105) 
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Note that the density and current satisfy a continuity equation: 

0=⋅∇+
∂

∂ J
t
eρ  (1-106) 

The potentials in turn can be derived from a ‘super-potential’ G: 
 (1-107) 

This set of potentials is called the Lorentz guage. 
 
Alternatively we could pick out one direction ŝ  from a divergence-free field which obeys a wave 
equation: 

 (1-108) 
This set of potentials is called the Coulomb gauge. Since electrons (and protons) do have 
anisotropy due to spin, this definition of potentials is not as contrived as it might appear.  
Consider the case of electromagnetic fields in vacuum with eρ  and J  both zero. If we take the 
curl of the third of Maxwell's equations and combine it with the time derivative of the fourth 
equation we obtain: 
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 (1-109) 
Each of these equations is a homogeneous vector wave equation. In vacuum, both E and B have 
zero divergence, so these equations have the same form as the conventional equation for shear 
waves. 

1.4.7. Wave Energy Density 
 
The rate of work performed by electromagnetic fields interacting with charged particles in a 
volume V is: 

∫ ⋅=
∂

∂

V
rd

t
W EJ3  (1-110) 

By substituting for J and using some vector identities we can obtain (see Jackson p.236): 
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 (1-111) 

 
Clearly the first term on the right-hand side represents the energy associated with the fields in the 
volume while the second term represents the flux of energy through the surface of the volume. 
Therefore the energy associates with an electromagnetic field in volume V is: 

[ ]∫ ⎥⎦
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=
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BErdU 223

8
1

 (1-112) 

This equation can be written in terms of potentials as: 
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 (1-113) 

1.4.8. Harmonic Representation of Waves 
 
The following discussion is based on Jackson [1975 pp. 299-301]. 

The plane wave solution of the one-dimensional wave equation for a scalar A is: 
( )tkzi

k eAA ω−
ω= ,  (1-114) 
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Both k and ω cannot be regarded as independent variables since the wave speed is given by 
kc ω= .  Using ( )kωω = , a general solution can be formed by integrating over all possible 

values of k: 

( ) ( ) ( )[ ]tkkziekAdktxA ω−
∫

π
=
2
1,

 (1-115) 
The normalization factor is arbitrary but conforms to standard Fourier analysis. 

For harmonic waves with the exponential ( ( )ti ω−⋅xkexp ), the derivatives transform as 
ωit −→∂ and ki→∇ . So the energy density of electromagnetic waves has the dependence: 

2
2

~ ΑkΑk ×+
ω

+Φ− i
c
iiU

.  (1-116) 

Since ω=ck we have 
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222222 ˆˆ~ˆˆ~ ΑkΑkΑkΑkkU
 (1-117) 

In the case of shear waves, the energy density is proportional to the stress times the shear 
( xF ddU ⋅= ). We won't derive this explicitly, but to show that it is reasonable consider the 
following proportionalities: 

ijij
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ij eSedS
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dSdu
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 (1-118) 

And since 
j

i
ijij x

u
eS

∂

∂
~~  we conclude that harmonic waves have  

22222
~~~ uukxuU ji ω∂∂  (1-119) 

So for both electromagnetic waves and shear waves the energy density is proportional to the 
square of the frequency (or wave number). Of course, if one takes the derivative of the wave 
amplitude to be the true amplitude (e.g. using E and B instead of Φ and A), then the energy 
density becomes independent of ω and k. However, there is no conventional wave for which the 
energy density could be written so that it is proportional to an odd power of ω or k. 
 

1.4.9. Separation of the Wave Equation 
In many physical problems solutions of the wave equation can be found by the method of 

separation of variables. For example, waves inside a rectangular enclosure might be assumed to 
have the form: 
( ) ( ) ( ) ( ) ( )tDzCyBxAtzyx =,,,ψ  

The wave equation is then: 
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Division by ABCD then yields: 
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Each term in this equation is a function of only one variable. Therefore each term must be a 
constant, and the sum of the constants is zero. For example: 
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Any function with 222 kc=ω and of the form: 

( ) ( )xk ⋅−±= tietzyx ωψ ,,,  (1-123) 

is clearly a solution. The general solution is a sum of these basis functions. 
 The wave equation is also separable in spherical coordinates (the following is based on 
Butkov [1968]). Assuming solutions of the form A(r)B(θ)C(φ)D(t) we have: 
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This yields the following separate equations: 
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Note that the polar solution B(θ) depends on the value of the azimuthal separation constant 2m , 
and the radial solution A(r) depends on the values of the polar ( )θλ  and temporal ( )22 cω  
separation constants. 
The temporal solutions have the form: 

( ) tieDtD ω±= 0  (1-126) 

The azimuthal solutions have the same form: 

( ) φφ imeCC ±= 0  (1-127) 

Due to the periodic nature of the variable φ, the value of m is quantized. If m is an integer then 
C(φ) is single-valued (C(2π)=C(0)). Half-integer values of m allow for double-valued functions 
(C(2π)=−C(0)). Note that double valued functions C(φ) are single-valued for |C(φ)|2.  
 Next we consider the polar equation. Multiplication by Bsinθ yields: 
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Letting θcos=x and [ ] 2121sin xdxdxd −== θθ , we obtain the Associated Legendre 
Equation: 
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where ( ) ( )( )xBxb θ= . Note that x=±1 are singular points. We require that the solutions be finite 

at these points. Letting ( ) [ ] ( )xuxxb
s21−=  yields the indicial equation: 
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At x=±1 we have: 



 

 
41 

04 22 =−ms  (1-131) 
which implies that s=±m/2. Since our purpose here is to make the solutions finite, we choose the 
positive value and assume m>0. The equation for u(x) is now: 
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We write u(x) as a Frobenius series: 

( ) ∑=
∞

=0n

n
n xaxu

 (1-133) 
which yields the equation: 
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Terms for each power of x must add to zero. This leads to the recurrence relation: 
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Note that as ∞→n   the recurrence relations becomes nn aa →+2 . For |x|<1 the power series 

converges since 0→nx  as ∞→n . However, at |x|=1 the series must terminate in order to 
achieve a finite solution. This only happens for special values of the separation constant θλ : 

[ ] [ ] [ ][ ]1121 2 +++=++++−=− mnmnmmnmnnθλ  (1-136) 

When m is an integer it is customary to write the separation constant as [ ]1+−= llθλ  with 
ml ≥ . When the separation constant is of this form, the functions u(x) are polynomials, and the 

functions b(x) are called the Associated Legendre Polynomials ( )xPml : 
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with lm ≤≤0 . Some authors omit the factor of ( )m1−  in this definition. Be careful! 
 
 The combined angular solutions ( ) ( )φθ CB  are called spherical harmonics. In normalized form 
and allowing for negative m the spherical harmonics are: 
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A few samples follow (from Jackson [1975] p.99). For l=0: 
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For l=1: 
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For l=2: 
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For l=3: 
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In principle one could have half-integer values of l and m, but these are not generally believed to 
be useful since the integer-indexed lmY ’s already form a complete set. 
 The wave equation may therefore be written in terms of eigenvalues: 
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This is called the Helmholtz equation. 

1.5. Properties of Waves 
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Figure 1.12  Diagram of a light ray propagating according to Snell’s Law. 
 

1.5.1. Wave propagation 
 
Many readers are probably familiar with Snell's law for wave refraction at a boundary between 
two media: 

2211 sinsin θ=θ nn  (1-144) 

 
where in  is the index of refraction which is defined as the ratio between the vacuum wave speed 
and the wave speed in the medium: 

i
i c
c

n 0=
 (1-145) 

The angles are measured from perpendicular, so the wave direction is always closer to 
perpendicular in the region with slower speed (higher n). In other words, the wave bends toward 
the region of slower speed. It turns out that Snell's law, which applies only to distinct boundaries, 
is a special case of a more general formulation called Fermat's principle: 

0=∫δ c
dl

 (1-146) 
This condition means that the path of the wave between any two points is such that the integral 
of length divided by speed is an extremum (maximum, minimum, or inflection). Small changes 
in the path do not change the value of the integral to first order. For the case of waves 
propagating between points ( 11, yx ) and ( 22, yx ) and intersecting the boundary between regions 
1 and 2 at the point (x,0), Fermat's principle becomes (see Figure 1.12  and Jenkins and White p. 
14-18): 
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The derivative yields: 
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This must be true when 0≠δx , implying: 
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Multiplication by the constant 0c  yields Snell's law. 
 

1.5.2. Dispersion and Group Velocity 
We have already seen that solutions of the wave equation have the form: 

( ) ( )ctzftzf ±=,  (1-150) 

The Fourier decomposition depends on (z,t) through the phase factor tkz ωφ ±= . Setting the 
phase to a constant value yields 0φω =± tkz . Differentiation yields the phase velocity: 
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 (1-151) 
If the phase velocity varies with frequency, the medium is said to be dispersive. Interference 
between different wave frequencies separates the wave into packets which have large oscillations 
where the phases of different frequencies are aligned and small oscillations where the phases of 
different frequencies are misaligned. The speed of these wave packets is called the group 
velocity, and can be derived from a simple example consisting of two frequency components 
(see e.g. Chen p. 69-70): 
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The sum of the two components is: 
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The rapidly varying phase of the exponential factor propagates with the phase velocity (ω/k), 
while the slowly varying phase of the cosine factor propagates at the group velocity: 

dk
dvg
ω

=
 (1-154) 

 

1.5.3. Interference and Diffraction 
 
Waves from different sources, or waves from a single source but following different paths, will 
not generally have the same phase at the point where they combine. These phase differences 
result in the phenomenon of interference. Constructive interference occurs where the waves are 
in phase, so that the amplitudes are added. Destructive interference occurs where the waves are 
180 degrees out of phase, so that the amplitudes are subtracted. 
Diffraction is a form of interference which results from the wave propagating past a small object 
or through a small opening. Different path lengths for waves propagating past the object (or 
opening) from one side or the other produce the interference pattern. 
 

1.5.4. Doppler shift 
 
Frequency (ωʹ′) at detector moving away from fixed source (ω): 

( )cv−=ʹ′ 1ωω  (1-155) 

Frequency (ω) at fixed detector from receding source (ωʹ′): 
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1.5.5. Uncertainty Principle 
Now consider a wave packet whose intensity has Gaussian shape with standard deviation xσ  at 
time 0t : 
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The Fourier representation is: 
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where the last step comes from completing the square in the exponent. This can be  
solved using a cute mathematical trick: 
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Therefore: 
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Note that the shape of the intensity profile (power spectrum) in the Fourier domain is a Gaussian 
with complex amplitude and standard deviation xk σσ 21= . It turns out that the Gaussian shape 
minimizes the product of the standard deviations, so we can write the classical uncertainty 
relation as: 

21≥σσ kx  (1-161) 

where xσ  and kσ  now represent the standard deviations of arbitrary wave intensity profiles in 
the spatial and Fourier domains. 
Thus far this uncertainty relation is simply a mathematical property of Fourier transforms. What 
makes it physically interesting is the fact that the waves also satisfy the wave equation, in which 
case the wave number k is inversely proportional to the wavelength. In three dimensions, the 
vector k indicates the propagation direction and is therefore related to the wave momentum. In 
particular, if the wave propagates through a slit of width Δx then the uncertainty in the x-
component of the wave number is [ ]x

xk Δ≥ 21σ . Hence the uncertainty in wave propagation 
direction increases as the width of the slit decreases. 

Similar uncertainty relations can be derived for other conjugate variables such as (ω,t). 
An interesting case is that of angular variables. Requiring the wave amplitude to be periodic in 
θ implies that the angular wave numbers m are quantized in integer steps: 
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The Fourier transform is: 
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 (1-163) 

The angular distribution cannot be a simple Gaussian because of the periodicity constraint. For 
illustration of the uncertainty principle for angular distribution, we will pick a distribution for 
which part of the Fourier transform (the cosine transform) can be performed analytically. Let: 
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As a→1 this distribution becomes sharply peaked at θ=π. 
The real part of the Fourier transform is: 
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As a→1 the Fourier components drop off slowly. Hence the spread, or uncertainty, of m-values 
increases as the spread of angles decreases. 

1.6. Summary 
We have reviewed the basic concepts of classical mechanics, including the physical and 
mathematical properties of waves. Now we are ready to apply this knowledge to theories of 
matter. 
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The following figures are believed to be free of copyright restriction, and were obtained from the 
sources listed. Other figures are either original works or are cited in the figure caption. 
Figure 1.1 Aristotle (circa 384-322 BC).   

Source: http://www.departments.bucknell.edu/history/carnegie/aristotle/bust.html 
Figure 1.2  Aristotle’s Universe. The Christian Aristotelian cosmos, engraving from Peter Apian's 

Cosmographia, 1524.   
Figure 1.3  Ptolemy (AD 127-145). 

Source: http://abyss.uoregon.edu/~js/glossary/ptolemy.html 
Figure 1.5  Nicolaus Copernicus (1473-1643).  

Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Copernicus.html 
Figure 1.6  Johannes Kepler (1571-1630). 

Source: http://www-history.mcs.st-and.ac.uk/Biographies/Kepler.html 
Figure 1.7  Isaac Newton (1643 - 1727).  

Source: http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Newton.html 
Figure 1.8  Albert Einstein (1879 – 1955).   

Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Einstein.html 
Figure 1.10  Emmy Noether (1882-1935).   

Source: www-gap.dcs.st-and.ac.uk/~history/Biographies/Noether_Emmy.html 
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Chapter 2.   Matter Waves and Special Relativity 
 

 
“Ignorance is preferable to error; and he is less remote from the 
truth who believes nothing, than he who believes what is wrong.” 
 — Thomas Jefferson, Notes on Virginia (Query VI) 

 

2.1. Introduction 
 

“Science is the belief in the ignorance of experts.” 
— Richard Feynman [1969] 

   
Early attempts at a wave theory of light presumed that light waves propagate through a 

universal medium in the same manner as sound waves through air. This medium was dubbed the 
luminiferous ‘aether’. Christian Huygens [1690] [Figure 2.1] published an explanation of 
reflection and refraction based on the principle that each surface of a wave-front can be regarded 
as a source of secondary waves. Huygens also discovered that birefringent crystals can separate 
light rays into two distinct components (polarizations). Isaac Newton, among others, doubted the 
wave hypothesis in part because it could not explain this property of polarization. Nonetheless 
Newton did perceive a similarity between color and the vibrations which produce sound tones.    

 
 

Figure 2.1 Christian Huygens (1629 – 1695) 
 
In 1675 Olaf Roemer attributed variations in the observed orbital periods of Jupiter’s moons 

to variable light propagation distance between Jupiter and Earth. This interpretation, combined 
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with Giovanni Domenico Cassini’s parallax determination of interplanetary distances in 1672, 

determined the speed of light to be about 810 2.1×  m/s (recent measurements put the value at 
8102.99792× m/s). 

 Because light, unlike particles, propagates at a characteristic speed, Thomas Young [Figure 
2.2]  was convinced that light consists of waves. He demonstrated this wave nature by producing 
interference fringes from light passing through two narrow slits. Then in 1817 he explained 
polarization by proposing that light waves consist of transverse vibrations such as occur in an 
elastic solid. Augustin Fresnel [Figure 2.3] adopted Young’s idea of transverse vibrations and 
developed a highly successful theory which explained diffraction and interference in addition to 
reflection and refraction. He supposed the aether to resist distortion in the same manner as a 
elastic solid whose density is proportional to the square of the refractive index.  

 

  

Figure 2.2  Thomas Young (1773 – 1829) Figure 2.3  Augustin Fresnel (1788 – 1827) 
     

A conceptual problem with a solid aether is the question of how ordinary matter can coexist 
and move freely through it. George Gabriel Stokes [Figure 2.4] proposed that the aether was 
analogous to a highly viscous fluid or wax: elastic for rapid vibrations but fluid-like with respect 
to slow-moving matter.  
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Figure 2.4  George Gabriel Stokes (1819 – 1903)             Figure 2.5  James MacCullagh (1809 – 1847) 
 
A more direct difficulty with the solid aether model was that density variations (e.g. at the 

interface between vacuum and medium) led to coupling between transverse and longitudinal 
waves, a phenomenon not observed for light waves. James MacCullagh [1839] [Figure 2.5] 
avoided this problem by proposing a ‘rotationally elastic’ aether whose potential energy Φ 
depends only on rotation (approximated by curl of displacement a): 

( )2
2
1 a×∇=Φ µ

 
The resulting wave equation is: 

( )aa
×∇×∇−=

∂

∂
µρ 2

2

t  
which is simply the equation of elastic shear waves which we derived in Chapter 1. Matter was 
now presumed to alter the elasticity of the aether rather than its density. This model successfully 
accounted for all of the known properties of light. Joseph Boussinesq [1868] [Figure 2.6] 
proposed that the aether could be regarded as an ordinary ideal elastic solid whose physical 
properties (density and elasticity) are unchanged by interaction with matter. The optical 
properties of matter were thus entirely due to the manner in which matter interacts with the 
aether. With this approach any classical optical phenomenon could be consistently modeled 
simply by finding the appropriate interaction term. 
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Figure 2.6  Joseph Boussinesq (1842-1929) Figure 2.7  William Thomson (Lord Kelvin, 1824 – 
1907) 

 
 

In spite of these successes, scientists continued to pursue theories of a fluid aether through 
which solid matter could propagate. William Thomson (Lord Kelvin) [Figure 2.7] attempted to 
model the aether as a ‘vortex sponge’: a fluid full of small-scale vortices with initially random 
orientation. He argued that this system could support transverse waves analogous to those in an 
elastic solid. James Clerk Maxwell  [1861a,b, 1862a,b] [Figure 2.8] modeled the aether as a 
network of rotating elastic cells interspersed with rolling spherical particles in order to derive the 
equations of electricity and magnetism. His resultant equations for light waves are equivalent to 
those of MacCullagh.  

 

 
 

Figure 2.8  James Clerk Maxwell, 1831 – 1879              Figure 2.9  Albert Michelson, 1852-1931 
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Since matter was presumed to move through the aether as particles moving through a fluid, 
many attempts were made to directly measure the relative motion between the earth and the 
aether. The most notable of these was an experiment first reported by Albert  Michelson [Figure 
2.9] in 1881 and  subsequently improved [Michelson and Morley 1887].  Interference fringes 
were formed by combining two beams of light which propagated along perpendicular paths. If 
the earth moves with respect to the aether then light propagating back and forth along a path 
aligned with the earth’s motion should have a slightly slower average velocity than light 
propagating perpendicular to the earth’s motion. Therefore the fringes should shift if the 
apparatus is rotated so that a given beam is alternately parallel and perpendicular to the direction 
of the earth’s motion. However, no such effect was observed in this or other ‘aether-drift’ 
experiments. 

Oliver Lodge [1893] demonstrated that the velocity of light is not noticeably affected by 
nearby moving matter, indicating that aether is not dragged along with matter. George FitzGerald 
proposed that the inability to measure motion relative to the aether could be explained if matter 
contracts along the direction of motion through the aether [Lodge 1892]. Joseph Larmor [1900] 
noted that in addition to the shortening of length, moving clocks should also run slower. Hendrik 
Lorentz [1904] [Figure 2.10] combined length contraction and time dilation to obtain the complete 
coordinate transformations. Henri Poincaré [1904] [Figure 2.11] gave the name ‘Principle of 
Relativity’ to the doctrine that absolute motion is undetectable. He also deduced that inertia 
increases with velocity and that no velocity can exceed the speed of light. Albert Einstein 
[1905a] reformulated relativity with the more positive assertion that the speed of light is a 
universal constant independent of observer motion. 

 

 

 

   Figure 2.10  Hendrik Lorentz  (1853 – 1928)                   Figure 2.11  Jules Henri Poincare  (1854 – 1912) 
 
One difficulty with the classical theory of light was a lack of success in describing radiation 

from a cavity at a fixed temperature (a ‘black body’). Max Planck [1900] [Figure 2.12] derived the 
correct formula for blackbody radiation by supposing light to be emitted by vibrators whose 
energy ωνε !nnh ==  is an integral multiple n of a constant h multiplied by the frequency ν  
(or a multiple of π2h=!  times the angular frequency πνω 2= ). Albert Einstein [1905b] used 
the idea that radiation consists of discrete quanta in order to explain the photo-electric effect, in 
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which the frequency of light must exceed a certain threshold in order to liberate electrons from a 
metal. Niels Bohr [1913] [Figure 2.13] used quantization of angular momentum and energy to 
derive energy levels and spectral frequencies of the hydrogen atom.  

 

  

Figure 2.12  Max Planck (1858 – 1947)                       Figure 2.13 Neils Bohr  (1885-1962) 
 
Recognizing that quantization is often associated with waves and vibrations, Louis Victor de 

Broglie [1924] [Figure 2.14] proposed in his doctoral thesis that electrons have a wave-like 
character with energy proportional to frequency ωε !=  and momentum proportional to wave 
vector kp != . Bohr’s quantization of angular momentum is then equivalent to the requirement 
that stable electron orbits contain an integral number of electron wavelengths. Walter Elsasser 
[1925] suggested that this wave property of electrons might explain maxima and minima in the 
angular distribution of electrons scattered from a platinum plate in experiments reported by 
Clinton Davisson and Charles Kunsman. The wave nature of electrons was confirmed in 1927 
when electron diffraction by crystals was clearly demonstrated in experiments by Davisson and 
Lester Germer [1927] [Figure 2.15], and independently by George Thomson and A. Reid [1927]. 
See http://online.cctt.org/physicslab/content/phyapb/lessonnotes/dualnature/Davisson_Germer.asp for a 
comparison of diffraction using x-rays and electrons. 

 



 

 
55 

  

Figure 2.14  Louis Victor de Broglie, 1892-1987                Figure 2.15  Clinton Davisson and Lester 
Germer in 1927 

 
The discovery of the wave-like propagation of matter actually solves the historic dilemma of 

how matter can move freely through a solid aether. In addition, the elastic medium itself need not 
change at all at the interface between vacuum and matter, thus explaining the lack of coupling to 
longitudinal waves. The wave nature of matter also leads directly to the Principle of Relativity 
without any modification of the classical Galilean view of Euclidean space and absolute time, as 
will be shown below. However, mechanical modeling of fundamental physical processes was no 
longer in vogue at the time of this discovery. Matter waves were not regarded as ordinary 
classical waves. 

2.2. Measurements with waves 
"If we are to achieve results never before accomplished, we 
must employ methods never before attempted." 
— Francis Bacon 

 
The first part of the following discussion closely follows Einstein’s explanation of special 

relativity but with different rationale [Einstein 1956]. Let us consider the transformations 
between coordinates of relatively moving observers who measure distances by timing how long 
it takes for waves to propagate back and forth between two points. The defining equation would 
be: 

( ) ( ) ( ) ( ) ( ) 223

1

22222
p

i
i tcxzyxds =∑ Δ=Δ+Δ+Δ=

=
 (2-1) 

where ds is the spatial distance between two points at a fixed time, c is an arbitrary constant, and 
pt  is the time it would take to propagate a wave from one point to the other if they remained 

stationary. With this definition of distance, the constant c is simply a scaling factor which relates 
the units of distance to the units of time. This distance corresponds to the usual definition of 
distance if c is the speed of the wave used in the measurement.  
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Now suppose we consider propagation of a wave from point 1P  to point 2P . In a reference 
frame in which the points are stationary, Eq. 2-1 holds. An observer in a different inertial 
reference frame using the same definition of distance would have: 

 
( ) 223

1

2
p

i
i tcx ʹ′=∑ ʹ′

=
Δ

 (2-2) 

The quantity ( ) ( ) ( ) 22222
ptczyx −Δ+Δ+Δ  is therefore zero for both observers. Allowing for an 

arbitrary offset, the invariance of this quantity for different observers is precisely the condition 
which Lorentz used to derive the relativistic transformations. The quantity 

( ) 2122222 zyxtc −−−  is sometimes called the ‘separation’. 
For example, suppose a submarine navigator is using sonar both to measure time and to 

detect fish in the water. The sailors use special sonar clocks which measure time by cycling 
sound wave pulses back and forth across a fixed distance in the water perpendicular to the 
direction of motion. Each cycle of wave transmission, reflection, and detection at the original site 
of transmission constitutes a tick of the clock. In this analysis we will neglect any effects of 
displacement of water by moving submarines. An animated presentation of this analysis may be 
found at http://www.classicalmatter.org/UnderwaterRelativity.htm. 

 
 

Figure 2.16 Time Dilation: The clock on Oʹ′  ticks slower than the clock on O by the factor 
221 scv− because waves travel farther between transmission and detection. Both O and Oʹ′  

measure the same number of clock cycles for a wave to propagate from their own sub to the fish 
and back. Hence they agree on distances perpendicular to the direction of relative motion. 

fish Resting

€ 

vt€ 

ct 2

€ 

ʹ′ t 

€ 

v

γ2
ct

=ℓ

€ 

ʹ′ t =
ct( )2 − vt( )2

c
=

t
γ

ℓℓ =
ʹ′

=ʹ′
2
tc

ℓ

€ 

Sonar clock

€ 

t

€ 

Stationary sub

€ 

Moving sub



 

 
57 

2.2.1. Time dilation 
If both the sub and the fish are at rest in the water, a sound wave reflected from the fish at 

distance ℓ  would return after time sct ℓ2= , where cs is the sound speed. The distance to the 
fish is therefore taken to be 2tcs=ℓ . Suppose now that the sub and fish are moving together in 
the water with common speed v perpendicular to the original direction of wave propagation 
(Figure 2.16). The path of the sonar clock waves forms two sides of a triangle for each cycle. A 
similar triangle is formed by the wave propagation to the fish and back. Therefore the number of 
clock ticks which occur during wave propagation to the fish and back is independent of speed. If 
the navigator doesn’t realize that she is moving, she would assume the same relation between 
distance and time: 2tcs ʹ′==ʹ′ ℓℓ . The navigator of a second submarine sitting still in the water 
would observe the wave propagate over a distance:  

2
2

2
2 ⎟

⎠

⎞
⎜
⎝

⎛+=≡
vttcd s ℓ

 (2-3) 

Substituting 2tcs ʹ′≡ℓ  and solving for t ʹ′  yields: 

221 scvtt −=ʹ′  (2-4) 

This equation merely expresses the fact that the clock on the moving submarine ticks more 
slowly that the stationary clock because the waves have farther to travel between ticks. Hence the 
time (t) measured by the stationary observer is longer than the time ( t ʹ′) measured by the moving 
observer. This phenomenon is referred to as ‘time dilation’.  

It is obvious that if the unprimed observer is truly stationary with respect to the water, 
then the moving clock does in fact tick more slowly. This is not merely an illusion. What is 
interesting is that the wave measurements performed by these submarines are insufficient to 
determine which sub is actually moving with respect to the water. Therefore the moving sub 
would interpret the stationary clock as running slowly, and in this case the effect is an illusion. 
This point will be discussed below in connection with Doppler shifts. 

Since the stationary navigator sees the fish (and first sub) move a distance x=vt while the 
wave is propagating, the above equation can be rewritten as: 
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 (2-5) 
which is the Lorentz transformation of time between two observers, with the primed observer 
moving in the x-direction with velocity +v with respect to the unprimed observer.  
 

2.2.2. Length contraction 
Since both observers measure the same distance ℓℓ =ʹ′ , the transformation of coordinates 

perpendicular to the motion must be simply: 
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Figure 2.17: Length Contraction: The true wave propagation time for the co-moving sub and fish is 
longer than for the stationary sub and fish by the factor ( )2211 scv− . Since the moving clock runs 

slow, the perceived propagation time is longer only by the factor 2211 scv− . Hence the stationary 
sub observes a shorter length than the moving sub. 

 
Now suppose that the first sub and fish are moving relative to the second sub parallel to the 

direction of wave propagation [Figure 2.17].  
As seen by the stationary sub, the frequency of the sonar clock on the first sub is slow 

according to Eq. 2-4 since the measured time t ʹ′  is proportional to the moving clock frequency 
ωʹ′  times the absolute time t: 

221 scv−=ʹ′ ωω  (2-6) 

The absolute distance between the fish and sub remains constant at ℓ. However the relative speed 
between the outgoing wave and the target fish is (c-v) whereas the relative speed between the sub 
and the incoming wave is (c+v). Therefore the propagation time is: 
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 (2-7) 

Of course the moving sub still uses the relation 2tcs ʹ′=ʹ′ℓ . Substituting the temporal relation 
221 scvtt −=ʹ′  yields the relation between lengths: 
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 (2-8) 
The stationary observer measures a shorter length than the moving observer. This phenomenon is 
known as length contraction. In this case the moving observer measurement is artificially long 
due to the fact that the actual sound velocity relative to the observer is not the same for the 
outgoing and incoming directions. Since the wave propagates for a longer time in the direction of 
slower relative motion, the effect is an apparent increase in length relative to a stationary 
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observer. Again, however, it is important to realize that the wave measurements alone do not 
determine which observer is moving. 

As noted previously, the origin of the moving frame corresponds to x=vt in the stationary 
frame. Therefore the coordinate transformation is obtained by xʹ′→ʹ′ℓ  and vtx −→ℓ : 

221 scv
vtxx

−

−
=ʹ′

 (2-9) 

which is the Lorentz transformation of position along the direction of motion. 
  It is customary to use the definitions: 
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A useful identity is: 

( ) 22122 11 γββγ +=−=
−

 (2-11) 

Using the above expressions, the Lorentz transformations become: 
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where subscripts are used to emphasize that we are discussing sound waves. 
 The inverse transformations merely change the sign of v (or β ): 
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 (2-13) 
Thus we see how Lorentz transformations can be obtained by using sonar or any other type 

of wave to measure time and distance. Lorentz invariance is not a property of time and space per 
se. Rather it results from the methods used to measure time and distance. If the above-mentioned 
sailors were to rendezvous to share their data and some vodka, they might conclude after a few 
drinks that absolute time and space in moving underwater reference frames are related by 
Lorentz transformations using the speed of sound in water. After sobering up, however, they 
would realize that sonar is not the only way to measure time and distance and that their 
measurements are not evidence of any non-classical properties of underwater space-time.  

2.2.3. Length and time standards 
The sonar clock might seem like an odd sort of clock, but consider the standard definition of 

a second, which is 9,192,631,770 periods of the radiation corresponding to the transition between 
the two hyperfine levels of the ground state of the cesium 133 atom [Taylor 1995]. If we regard 
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the cesium atom as a kind of optical cavity which resonates at the prescribed frequency, then this 
is quite similar to our sonar clock. 

Consider also that the standard definition of the meter is the length of the path traveled by 
light in vacuum during a time interval of 1/c =1/299,792,458 of a second [Taylor 1995]. So we 
do in fact equate length with wave propagation time just as our hypothetical sailors do, and the 
quantity c is nothing more than a unit conversion factor. 

2.2.4. Doppler shift  
Thus far we have shown that when waves are used to measure distance and time, the space-

time coordinates transform between relatively moving observers according to the Lorentz 
transformations. Transformation of other dynamical variables is straightforward. 

The phase of a plane wave is given by: 

tωφ −⋅= xk  (2-14) 

This quantity is independent of observer motion. Therefore: 
tt ωω −⋅=ʹ′ʹ′−ʹ′⋅ʹ′ xkxk  

For motion along the x-axis we can plug in the inverse transformations for x and t to obtain: 
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The coefficients of tʹ′ must be equal on both sides of the equation, and likewise for the 
coefficients of xʹ′. Therefore: 
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Letting cvβ = , the transformation for arbitrary direction of relative velocity is: 
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Hence the spatio-temporal frequency components ( kc,ω ) transform in the same manner as 
the coordinates (ct,x). Quantities which transform according to these Lorentz transformations are 
called ‘four-vectors’. Each four-vector has three spatial components and a temporal component. 
Other examples of four-vectors (with respect to light waves) include: 
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Note that for light waves ω=kc .  Hence the frequency and wave vector transformations for 
motion parallel to k can be written as: 

( )

( )
0

1
1
11

||||

==ʹ′

−=ʹ′

+

−
=−=ʹ′

⊥⊥ kk

βγ

β
β

ωβγωω

kk

 (2-18) 

The first of these equations is the relativistic Doppler shift formula for light waves.  
The relativistic Doppler shift has a simple interpretation. First, consider the classical Doppler 

shifts as shown in  Figure 2.18 below. 

 
 

Figure 2.18  Classical Doppler shifts for moving (approaching) source  and detector differ by a factor of 
[ ][ ] 2111 γββ =−+ . This factor is not affected by reversal of the velocity direction. 

 
 Consider a stationary observer O in a lighthouse which pulsates with angular frequency ω. 

An observer Oʹ′  moves away from the lighthouse starting at t=0 in a speedboat. As a moving 
detector, Oʹ′  receives a classically Doppler-shifted frequency of ( )βω −1 . However, Oʹ′ ’s clock 
is running slow by the factor γ1  because the boat is moving. Hence Oʹ′  perceives the incident 
wave frequency to be higher by the factor γ  so that ( )βγωω −=ʹ′ 1 . The stationary observer O 
would agree with this correct description of events. Note that observer O can measure the speed 
of observer Oʹ′  by measuring the time of flight of radar pulses which reflect off of Oʹ′  and back 
to O. Successive pulses separated by transmission time interval Tτ  will be received with delay 
time interval ( )cv+= 1TR ττ , yielding ( ) TTR τττ −= cv . 
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Figure 2.19  Velocity Measurement: Radar signals sent simultaneously by O and Oʹ′  will also be 
received simultaneously after reflection. Although Oʹ′ ’s clock ticks slowly, the proportionality 

between radar pulse propagation time and total time elapsed is the same as for O. Therefore both O 
and Oʹ′  measure the same relative velocity. 

 
Conversely, the observer Oʹ′  incorrectly believes that he is stationary and that O is moving. 

Oʹ′  measures the speed of recession of the lighthouse via radar. The true propagation time of the 
each pulse is the same as measured by O (see Figure 2.19 above). The fact that Oʹ′ ’s clock is 
running slowly reduces all of his measured times by the factor γ1 , but this does not affect the 
proportionality between the transmission time interval and the reception time interval. Therefore 
Oʹ′  sees O recede with speed v. 

Observer Oʹ′  observes the lighthouse light fluctuate with frequency ( )βγω −=ʹ′ 1 . This 
formula accounts for slowing of the moving clock and Doppler shift at the moving (receding) 
receiver. Oʹ′  presumes the detected frequency to be classically Doppler shifted at the source by a 
factor of ( )β+11 . Correcting for this Doppler shift yields ( )βω +ʹ′ 1  for the co-moving source 
frequency. Since Oʹ′  thinks that O’s clock is slow, the correction factor γ   is again introduced to 
obtain the frequency perceived at the source. This leads to:  
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which is of course the inverse frequency transformation. Note that Oʹ′  incorrectly attributes the 
Doppler shift to a moving source rather than a moving detector, resulting in an erroneous factor 
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of ( )( ) 2111 γββ =−+ . However, this mistake is exactly compensated by the fact that Oʹ′  
incorrectly believes that O’s clock is running slower by the factor γ1 when in fact it is running 
faster by the factor γ . Oʹ′mistakenly multiplies by γ  when he should have divided by gamma to 

correct for the different clock rates (an erroneous factor of 2γ ). The erroneous factors of 2γ  and 
21 γ cancel and Oʹ′  correctly deduces the frequency ω  for the stationary source at O. This 

cancellation of errors renders impossible the determination of motion relative to the medium 
which carries the wave. It is the crux of special relativity. 

If the relative motion is not along the line of separation then the Doppler shifts are dependent 
on angle. Nonetheless, one can correct for this angular dependence to determine the head-on 
Doppler shift consistent with the analysis above. 

2.3. Matter waves and light 
 

“It is better to light one small candle than to curse the darkness.”  
(“與其詛咒黑暗, 不如然起蠟燭”) 
— Confucius (孔夫子) 
 
One limitation of the above discussion is that sound waves in water are too simple to serve as 

a model of matter. The sonar clock had to be oriented perpendicular to the direction of motion so 
that its apparent length was independent of velocity. Another problem is that sound waves are 
scalar waves, described by a single number (e.g. pressure) at each point.  A more interesting 
medium to consider is an elastic solid, which can support shear waves whose amplitude 
(displacement or rotation) can have multiple components. Waves which include significant 
rotations are especially of interest because this allows for intrinsic, or spin, angular momentum in 
addition to the orbital angular momentum associated with propagation of the wave. 

The above results show that the equations of special relativity are applicable to a wide variety 
of wave phenomena. The Lorentz transformations relate wave measurements made in different 
frames of reference. It is well-known (and easily verified) that any wave equation of the form: 
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∂ fMc
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with invariant scalar M is invariant under Lorentz transformations with wave speed c. In other 
words Lorentz invariance is a general property of waves and not specific to electromagnetic 
waves.  

Now we are in a position to appreciate what is special about light. Ordinarily we do not 
measure distances and times by propagating waves back and forth. Instead we use material 
clocks and rulers. The amazing thing about material clocks and rulers is that the resulting 
distance and time measurements transform with exactly the same Lorentz transformations as 
would be obtained if the measurements had been made by propagating light waves. In other 
words, matter behaves as if it consists of waves which propagate at the speed of light. Since 
matter can appear to be stationary, we must suppose that the waves somehow propagate in cyclic 
paths in the ‘rest’ frame. Such waves are commonly referred to as soliton waves.  
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Historically, the equations of relativity were derived from the observation that absolute 
motion is undeterminable. Einstein reformulated relativity on the basis that the speed of light is 
independent of observer motion. Yet now we have a simpler alternative postulate for special 
relativity: matter consists of waves which propagate at the speed of light. This physical picture 
suggests that matter and anti-matter can annihilate into photons and vice versa because photons 
and matter are simply different packets of the same type of wave. We will see that our new 
hypothesis is also consistent with the Dirac equation for the electron, in which the velocity 
operator has eigenvalues of magnitude c. Mass is associated with a reduction in group velocity 
which may be attributed to rotation of the wave propagation direction.  

With respect to aether-drift experiments such as performed by Michelson and Morley, it is 
clear that if matter waves have the same speed as light waves then any effect of earth’s 
propagation through the vacuum would equally affect the light waves and the apparatus used to 
measure them. It has long been recognized that Lorentz invariance of matter is required to 
explain the null result of such experiments. What has not been generally recognized (though 
there are numerous exceptions) is that the wave nature of matter provides the basis for relativity 
and is entirely consistent with classical notions of absolute space and time. 

2.3.1. Soliton waves 
 Let c represent the characteristic speed of transverse waves in an elastic medium. The 

equation of evolution of the wave amplitude a(x,t) is: 

awauaa !! ×+∇⋅−∇=∂ 222 ct  (2-21) 
Assume that the convection and rotation terms reduce to a constant coefficient of a, so that 

each component satisfies: 

( ) ii aMc
t
a 222
2

2
−∇=

∂

∂

 
It is common to use Fourier decomposition so that the wave equation can be written as: 

( ) ii AMkcA 2222 +=ω  (2-22) 

where Ai(k,ω) is the Fourier transform of the wave amplitude ai (x,t). The wave group velocity u 
is given by: 
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Solving for ( ) 2cukk ω= yields: 
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where we have used the familiar definition of γ  to obtain the expression on the right.  
Substitution into the wave equation yields: 
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If we define !20cmM ≡  then we obtain the quantum mechanical relations: 
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2.3.2. Energy and momentum 
A special property of electron waves, which will be discussed in Chapter 3, is that the 

energy is proportional to frequency ( ω!=E ) and momentum is proportional to the wave vector 
( kp != ). Classically, the quantity " must represent the integrated wave amplitude. We assume 
that all matter waves have similar proportionalities, though perhaps with different integrated 
wave amplitudes. Using these substitutions yields in the above equations yields the relativistic 
relations: 
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This last equation, given the first two, merely expresses the tautology: 
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Figure 2.20  This is the Pythagorean relation for a right triangle with sides (c, v, 22 vc − ). 
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The hypotenuse c, which corresponds to energy, indicates that the disturbance moves with 

speed c. The velocity v corresponds to momentum and indicates propagation in the direction of 

the wave vector. The velocity 22 vc −  corresponds to mass and indicates propagation 
perpendicular to the wave vector (or at least independently from the wave vector: the 
Pythagorean relation also holds, on average, for cycloidal motion, e.g. 

( )|||| sinˆcosˆ uuu ++= ⊥⊥⊥ θθ xxu  with vu =||  and c=u ). Since the propagation associated 
with mass does not yield any net transport of the disturbance, it must be at least approximately 
periodic, and the simplest assumption is circular motion. The general propagation of the wave 
would then be helical or cycloidal (or in between). Hestenes [1990] has also proposed helical 
motion of elementary particles. 
 Multiplying each side of the above velocity triangle by cm0γ  yields the energy-
momentum relations. 

 
 

Figure 2.21  Triangular relationship between rest mass, momentum, and energy. 
 

If the stationary frequency of an elementary particle is really associated with circular motion 
then we can compute the radius of the motion. For electrons we have: 
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Note that this quantity is different from the Bohr radius ( cm102918.5 92
0

2 −×== emRe ! ) 
which is the classical radius of the electron orbit in the ground state of the hydrogen atom. The 
ratio between these two distances is called the fine structure constant: 
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 The definitions of E and ip  lead directly to the equation of motion ii pEk ω=  in the Fourier 
domain. In the spatial domain this is the classical relationship between kinetic energy and 
momentum: 
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2.3.3. Transformation of velocity 
The expression for group velocity can be combined with the transformation laws for frequency 
and wave vector to work out the transformation properties of the velocity. For relative motion 
parallel to the velocity only the component ||k  is affected: 

2
||

||2||2
||

11
1

cuv
vu

cu
cu

uc
ucc

ck
ck

c
k

cu
−

−
=

−

−
=

−

−
=

−

−
=
ʹ′

ʹ′
=ʹ′

β
β

β
β

βγγω

ωβγγ

ω
 (2-31) 

This is the transformation law for velocity parallel to the direction of relative motion. For relative 
motion perpendicular to the velocity the only change is to ω: 
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For an arbitrary direction of relative motion v, we use vu vu ⋅=||  to obtain the transformation 
laws for components of velocity parallel ( ||u ) and perpendicular ( ⊥u ) to the direction of relative 
motion: 
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2.3.4. The twin paradox 
One supposedly non-intuitive consequence of relativity is that two twins can change their 

relative age through motion. If one twin (Theo=O) remains stationary while the other twin 
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(Primo=Oʹ′ ) takes a high-speed journey through space, then the twin who traveled will return 
younger that the twin who stayed home. A more common manifestation of this phenomenon is 
that high-energy cosmic ray particles which zoom to earth at relativistic speeds have longer 
lifetimes than otherwise identical slow-moving particles. Although the effect of motion on time 
may seem almost magical, the explanation is really quite simple. 

Consider a clock which counts the number of circular orbits executed by an electron wave. 
Any clock made of matter waves will tick at a proportionate rate. While the stationary electron 
executes a circular path, a moving electron executes a spiral (or cycloidal) path with the same 
absolute speed c. Since the moving electron travels farther than the stationary electron during 
each rotation cycle, a moving electron clock ( τωʹ′=ʹ′t ) will tick more slowly than a stationary 
one ( ωτ=t ). For a translational velocity of v, the speed of circulation is: 

( ) γcvcv =−=ʹ′⊥
212

||
2

 (2-34) 
and therefore the moving clock ticks more slowly ( tt <ʹ′ ) by the factor: 
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This is equivalent mathematically and similar physically to the derivation above of time dilation 
for sound waves in water. Hence the moving Primo will age less than the stationary Theo. 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.22   
Time Dilation: Moving matter waves propagate farther than stationary matter waves during each 
cycle. Therefore moving clocks tick more slowly than stationary clocks. Sd  = distance traveled in 

one cycle of stationary wave, Td  = translational distance. The distance formula for the cycloid is 
exact only for an integer number of cycles. 

 
 
 We have stated before that wave measurements cannot determine absolute motion 
relative to the medium. Therefore Primo should end up younger than Theo even if they are 
initially moving with respect to the medium. Suppose that the two twins Primo and Theo are 
initially moving together with velocity 1v  in the x direction. A stationary observer sees Primo 
slow to a stop at t=0, wait for a time 1Tt = , then accelerate to speed 2v  to catch up with Theo at 
time TTTt =+= 21 . In this case Primo is actually aging more rapidly than Theo at first, but 
then ages very slowly while trying to catch up. Note that: 
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At the time the twins meet up again, Theo has aged by 1γT  since his clock is running slower 

than a stationary clock (using ( ) 21221
−

−= cviiγ ). But Primo has aged by 
=+ 221 γTT ( )221211 vvvvT γ+− . The difference in their ages is therefore: 
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To second order in v/c terms, this difference is: 
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where the inequality arises from the fact that 12 vv ≥ . More generally, we can try to minimize the 
age difference with respect to 2v  (for a given T and 1v ). The minimization condition is: 
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which yields after a little algebra: 
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Substitution of this expression into the time difference yields: 
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Since 122 vv ≥γ  the inequality can be written as: 
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since 11 ≥γ . Hence the twin who moves away and comes back always ages less than the twin 
whose motion was constant. This is a simple consequence of the wave nature of matter. 
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2.4. Alternative interpretations 
 

“A man may imagine things that are false, but he can only 
understand things that are true, for if the things be false, the 
apprehension of them is not understanding.” 
— Isaac Newton 

 
The reader should be warned that the simple interpretation of relativity presented here is not 

generally understood. Since its inception at the dawn of the 20th century, the Principle of 
Relativity has been interpreted as a physical law rather than as a purely mathematical 
relationship between space and time measurements. It is believed that geometrical relationships 
between measurements accurately represent the geometry of physical space. Such an 
interpretation assumes that measurements of distance and time can approach perfection. The 
four-dimensional space-time that satisfies the principle of relativity is usually referred to as 
“Minkowski space”. According to our point of view, Minkowski space is the space of 
measurements made with waves propagating in a Galilean physical space-time. 

It has long been recognized that compliance with the Principle of Relativity requires matter 
waves to be Lorentz covariant. However the converse logic has been largely ignored. Lorentz 
covariance is a property of waves, and the wave nature of matter implies the Principle of 
Relativity for a classical Galilean space-time. Thus although absolute motion cannot be 
measured using light and matter waves, there is no reason to presume that absolute motion has 
no intrinsic meaning. Indeed, if another type of wave could be measured (e.g. gravity waves) 
then it may be possible to determine absolute motion with respect to the aether. The 
interpretation of relativity as a physical property of space-time is a philosophical preference that 
is in no way justified by evidence. 

It is often emphasized that absolute motion cannot be determined. This claim is actually 
doubtful, since motion relative to the cosmic background microwave radiation can be 
determined. More importantly, it is possible to determine absolute acceleration. Two observers 
undergoing a change in relative velocity can determine which of them is accelerating because 
only the accelerating observer will experience a force. If the inertial (constant velocity) observer 
sees that an accelerated object has changed its length and clock rate, he can reasonably conclude 
that the acceleration caused real changes to the object. Consistency therefore demands that the 
accelerated observer should attribute any observed changes in length and clock rate of distant 
objects to changes in his own accelerated rulers and clocks. 

Special relativity is entirely consistent with the ordinary limitations of measurement in a 
Euclidean space with absolute time. This simple fact explains why classical models of 
disturbances in the aether have historically produced physical equations consistent with the 
Principle of Relativity.  
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Figures 
 
The following figures are believed to be free of copyright restriction, and were obtained from the 
sources listed. Other figures are either original works or are cited in the figure caption. 
 
Figure 2.1 Christian Huygens (1629 – 1695) 

Source: http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Huygens.html 
Figure 2.2  Thomas Young (1773 – 1829) 

Source: http://www-history.mcs.st-
andrews.ac.uk/Mathematicians/Young_Thomas.html 

Figure 2.3  Augustin Fresnel (1788 – 1827). 
Source: http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Fresnel.html 

Figure 2.4  George Gabriel Stokes (1819 – 1903). 
Source: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Stokes.html 

Figure 2.5  James MacCullagh (1809 – 1847).  
Source: http://www-history.mcs.st-
andrews.ac.uk/history/PictDisplay/MacCullagh.html 

Figure 2.6  Joseph Boussinesq (1842-1929). 
Source: http://ambafrance-ca.org/HYPERLAB/PEOPLE/bouss.html 

Figure 2.7  William Thomson (Lord Kelvin, 1824 – 1907). 
Source: http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Thomson.html 

Figure 2.8  James Clerk Maxwell, 1831 – 1879. 
Source:  http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Maxwell.html 

Figure 2.9  Albert Michelson, 1852-1931). 
Source:  http://nobelprize.org/nobel_prizes/physics/laureates/1907/index.html 

Figure 2.10  Hendrik Lorentz  (1853 – 1928). 
Source: http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Lorentz.html 

Figure 2.11  Jules Henri Poincare  (1854 – 1912).  
Source : http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Poincare.html 

Figure 2.12  Max Planck (1858 – 1947). 
Source: http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Planck.html 

Figure 2.13 Neils Bohr  (1885-1962). 
Source: http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Bohr_Niels.html 
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Chapter 3. Elastic Waves and Quantum Mechanics 
 

“An ocean traveler has even more vividly the impression that 
the ocean is made of waves than that it is made of water.” 
  —Arthur S. Eddington 

 

3.1. Introduction 
“… we must hang on to the basic ideas of logic at all costs.” 
— Paul Adrian Maurice Dirac [1989] 
 

The theoretical developments discussed in this book were accompanied by myriad 
experimental discoveries, most notably in the laboratories of J. J. Thomson [Figure 3.1] and his 
student (and later successor at Cambridge) Ernest Rutherford [Figure 3.2]. J.J. Thomson’s study 
of cathode rays led to his discovery of the electron [1897]. Rutherford [1911, 1914] observed 
that beams of alpha particles occasionally scatter at large angles from a thin target. This 
observation led him to propose that atoms contain a positively charged nucleus of extremely 
small size (of order 1210−  cm radius) surrounded by a much larger volume (of order 810−  cm 
radius) of negatively charged electrons. The Rutherford atomic model became the basis for all 
future theories of atomic structure.  

 

  

Figure 3.1  .J. Thomson (1856-1940) Figure 3.2  Ernest Rutherford (1871-1937) 

 
We have already mentioned the beginnings of quantum theory in the introduction to the 

previous chapter. Now we will discuss events which led to the development of a wave equation 
for the electron. This synopsis is based largely on Whittaker [1954]. 
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According to Bohr’s atomic model [Bohr 1913] the electron energy levels in hydrogen 
are: 
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π  (3-1) 

where R is called the Rydberg constant and π2h=! .	  Radiation is emitted when an electron 
drops from a higher energy level (larger n) to a lower energy level (smaller n), and the frequency 
of the radiation is proportional to the difference in energies.	  

 

 
Figure 3.3  Arnold J.W. Sommerfeld (1868-1951) 

 

William Wilson [1915] and Arnold J. W. Sommerfeld [1915a, 1915b, 1916a] [Figure 3.3] 
recognized Bohr’s quantization of angular momentum of circular orbits (yielding energy 
quantum number n) to be a special case of quantization of action: hdqp ii =∫ , where iq  is a 
coordinate variable and ip  is the corresponding momentum. Sommerfeld explained much of the 
‘fine structure’ of hydrogen spectral lines by generalizing Bohr’s circular orbits to ellipses, 
including relativistic inertia corrections and a new azimuthal quantum number k. The relativistic 
correction to the energy levels of hydrogen-like atoms is: 
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The fine structure constant, 13712 ≈!ce , represents the ratio between the velocity of the first 
Bohr orbit and the speed of light [Whittaker 1954, p. 120].  

Karl Schwarzchild [1916] and Paus Sophus Epstein [1916] used action quantization to 
derive the spectral line shifts for hydrogen in a strong electric field (Stark effect). Sommerfeld 
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[1916b] and Peter Debye [1916] explained the splitting of spectral lines in a strong magnetic 
field (Zeeman effect) by using three quantization conditions: energy (n), magnitude of orbital 
angular momentum ( nkl ≤−= 1 ), and component of angular momentum parallel to the applied 
magnetic field (m). Note that lm ≤ . Quantization of a single component of angular momentum, 
termed ‘space quantization’, was verified when O. Stern and W. Gerlach [1921] split a beam of 
silver atoms into two discrete components simply by applying a nonuniform magnetic field.  

Principal spectral lines of alkali elements (e.g. Na) are doublets which could not be 
explained by the aforementioned quantum numbers. Various schemes were proposed to include 
an additional angular momentum quantum number which was generally supposed to be 
associated with the atomic core. Wolfgang Pauli [Figure 3.4] disputed this identification of core 
angular momentum in part because it led to a 3Z  dependence in the relativistic energy shifts. He 
instead attributed the quantum number j to the radiant electron which possessed a “classically 
non-describable two-valuedness”. Pauli [1925] also observed that restriction of each set of 
quantum numbers n, k, j, and m to a single electron (the ‘exclusion principle’) was consistent 
with the notion of electron shells (proposed by Edmund C. Stoner and J. D. Main Smith) which 
close when all of the quantum numbers for a given value of n are filled by electrons. 

Ralph Kronig realized that self-rotation of the electron with angular momentum of 2!  
would explain the 4Z -dependence of the doublet energy shifts, but since his calculation of the 
energy levels was off by a factor of two he did not publish his idea. Uhlenbeck and Goudsmidt 
[1925] did publish the idea of electron angular momentum of 2! , but unsuccessfully attempted 
to withdraw the paper after realizing the factor of two discrepancy. At this time Llewellyn 
Hilleth Thomas [1926, 1927] resolved the factor of two discrepancy by publishing a paper which 
demonstrated that the (classical) relativistic precession of the electron magnetic moment in the 
internal atomic magnetic field, and hence the splitting of energy levels, had been computed 
incorrectly. Hence the electron’s spin angular momentum of 2!  was established. 

 

 
 

Figure 3.4  Wolfgang  Pauli (1900-1958) Figure 3.5  Werner Heisenberg (1901-1976) 
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Werner Heisenberg [1925] [Figure 3.5] proposed that transitions between stationary states 

(e.g. m and n) could be represented by an array of elements (e.g. mnx ) whose amplitude is 
related to the likelihood of the transition. Max Born [1925] and Pascual Jordan quickly 
developed this idea into a complete formulation of matrix mechanics in which commutation rules 
replaced action integrals as the basis of quantization (e.g. !i=− pqqp  where q is a coordinate 
and p is the conjugate momentum).  

Louis de Broglie [1924] proposed a novel explanation for Bohr’s quantization rules. He 
proposed that matter has a wavelike character with energy proportional to frequency ωε !=  and 
momentum proportional to wave vector kp != . The periodic condition for a wave of 
wavelength λ propagating in a circular orbit of radius r: 

λπ nr =2  (3-3) 
implies quantization of angular momentum: 

!nrp =  (3-4) 
 

               
Figure 3.6  Erwin Schrodinger (1887-1961) 

 
Erwin Schrödinger [1926] [Figure 3.6] subsequently published a differential wave equation 

based on de Broglie’s matter waves. For a non-relativistic particle of mass m in a potential V(r,t), 
the energy is given by: 
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 (3-5) 

The corresponding differential equation for de Broglie waves is called the Schrödinger equation: 
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where the wave function ψ  is a complex scalar. For a Coulomb potential ( reV 2−= ) this 
equation yields energy eigenvalues equal to Bohr’s energy levels. Schrödinger initially 
interpreted the wave function to be related to electrical charge density, but Max Born’s [1926] 
interpretation of ψψ *  as a probability density  was soon widely accepted. A probability 

conservation equation can be obtained by multiplying *ψ  and adding the complex conjugate: 
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The Schrödinger equation has the classical Hamiltonian form (see e.g. Goldstein [1980]): 
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with ψ!i−  representing Hamilton’s principal function whose gradient is the momentum p. 

The differential equation corresponding to the relativistic energy-momentum relation 
42

0
222 cmcpE +=  is called the Klein-Gordon equation (or relativistic Schrödinger equation): 
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Interpretation of this equation proved more difficult than Schrödinger’s non-relativistic equation. 
It does not have the classical Hamiltonian form with a first-order time derivative. The resulting 
conservation equation is obtained by multiplying *ψ  and subtracting the complex conjugate: 
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 (3-10) 
The density in this equation (the first square brackets) can have either sign, making it 
problematic as an expression for probability density. Nonetheless the Klein-Gordon equation 
eventually became accepted as a description of particles with zero spin.  

Schrödinger subsequently demonstrated that Heisenberg’s commutation rule 
!i=− pqqp  follows immediately from the definition of conjugate momenta as derivatives: 
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Pauli [1927] multiplied Schrodinger’s wave function by a two-component factor (termed a 
spinor) to model the two-valued space quantization due to electron spin. Multiplicative operators 
on Pauli spinors are linear combinations of independent 22× matrices which by convention are: 
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The last three of these matrices form a vector (i.e. transform as a vector under rotations) and are 
called the Pauli matrices. 

 

 
Figure 3.7  Paul Dirac (1902-1984) 

 
Paul Dirac [1928] [Figure 3.7] finally derived a valid relativistic wave equation by extending 

the wave function to four components and using matrix coefficients. The Dirac wave function 
has four complex components which can be written as: 
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 (3-13) 

Such a wave function is called a Dirac spinor or bispinor. A Dirac spinor can be decomposed 
into left- and right-handed Pauli spinors which each have two complex components. Dirac’s 
equation describing an electron in an electromagnetic potential is: 

( )ψψβψψ A⋅−Φ++∇⋅−=
∂

∂
αα eecmci

t
i e

2!!
 (3-14) 

where α  and β  are the matrices: 
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Dirac also demonstrated that quantum mechanical equations could describe multiple particles 
by introducing a new wave function whose integrated square magnitude is taken to be the 
number of particles. This procedure is called “second quantization” (see e.g. [Tomonaga 1974]). 
Dirac developed this method for bosons by assuming the scalar amplitudes ( ka ) of various states 

(k) to be operators which satisfy the commutation relation kllklk aaaa δ=− †† . The product kk aa
†  

then has non-negative integer eigenvalues and represents the number of particles in each state. 
Jordan and Eugene Wigner [1928]  adapted this idea to fermions by using an anti-commutation 
relation kllklk aaaa δ=+ †† . In this case the product kk aa

†  has eigenvalues of zero and one, 
consistent with Pauli’s exclusion principle. 

Dirac’s research led him to believe in the existence of an aether:  “If one examines the 
question in light of present-day knowledge, one finds that the aether is no longer ruled out by 
relativity, and good reasons can now be advanced for postulating an aether….”  [ Dirac 1951]. 
His rationale was that an aether velocity was required for setting up a Hamiltonian formulation 
of the action principle.  

Dirac’s equation remains the foundation for describing matter waves. The Standard Model of 
particle physics “asserts that the material in the universe is made up of elementary fermions 
interacting through fields, of which they are the sources. The particles associated with the 
interaction fields are bosons.” [Cottingham and Greenwood 1998]. The wave functions are 
regarded as dimensionless quantities whose magnitude at any point represents a probability 
density for the presence of one or more particles. Some efforts were made to formulate a 
classical interpretation of the wave function (notably by de Broglie [1928] and David Bohm 
[1952], see e.g. Goldstein [2002]) but none was successful in the 20th century. 

The mathematical and geometrical properties of spinors were first studied by the 
mathematician Élie Cartan in 1913 (see e.g. Hladik [1999] for a mathematical analysis of 
spinors). The algebra of spinors is closely related to that of quaternions, which were invented by 
Sir William R. Hamilton around 1843 as a generalization of complex numbers to higher 
dimension. Quaternions consist of four real components. They can in fact be written in matrix 
form with basis vectors I, xσ , yσ , and zσ . 

Spinors have historically been regarded by mathematicians as operators (linear 
representations of rotation groups) and by physicists as abstract quantities with no classical 
interpretation. However, David Hestenes [1967] developed a space-time algebra which provides 
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a geometrical interpretation of the Dirac equation. The wave function describes a generalized 
Lorentz rotation (spatial rotation and velocity boost) in addition to an amplitude and one 
additional parameter which appears to transform between matter and anti-matter. 

There have been successful attempts to reformulate the Dirac theory in terms of relations 
between local physical observables [Takabayashi 1957, Hestenes 1973]. The Dirac equation 
uniquely determines the evolution of local dynamical quantities such as angular momentum 
density, linear momentum density, and energy density. In other words the Dirac equation is 
deterministic with respect to dynamical quantities.   

In this chapter we will derive a Dirac equation to describe rotational waves in an elastic solid. 
We will regard ‘particles’ as soliton solutions. We will then derive numerous properties of 
elementary particles from this model.  

3.2. Torsion Waves 
...there are circumstances in which mathematics will produce results which no one has really 
been able to understand in any direct fashion. An example is the Dirac equation, which appears 
in a very simple and beautiful form, but whose consequences are hard to understand. 
— Richard P. Feynman, Robert B. Leighton, and Matthew Sands [1963a] 
 

Quantum theory developed from an initial classical picture of matter as particles. Yet we 
have seen that special relativity is a natural consequence of the wave nature of matter. Therefore 
the classical theory which corresponds to quantum mechanics must be a wave theory. One 
historical dilemma of quantum wave theory is the lack of an obvious physical interpretation of 
the wave amplitudes. Max Born suggested that the wave intensity be interpreted as a probability 
density, but he emphasized that "...the probability itself is propagated in accordance with the law 
of causality" [Born 1926]. While there is no doubt that the quantum wave functions can predict 
the likelihood of experimental results, their evolution indicates causal rather than stochastic 
interactions. 

Actually, the dynamical interpretation of the wave functions can be resolved by simple 
dimensional analysis. In terms of Dirac spinors, the z-component of spin angular momentum 
density zs  is:  
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where ψ  is the 4-component complex wave function with 2
4

2
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2
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and zσ  is the z-component spin angular momentum matrix: 
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The leading factor in Eq. 3-16  is simply a constant which establishes units.  
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Construction of a classical wave theory of matter must therefore begin with waves 
carrying angular momentum. Classically, angular momentum is associated with rotations of 
inertial bodies. Waves of angular momentum require not only inertia but also torque which 
resists rotations. Generation of torque in response to local rotations implies elasticity. Therefore 
the classical model of matter waves consists of rotations in an elastic solid (torsion or shear 
waves). We already know that the elastic solid was the basis for classical wave theories of light, 
so we can proceed with some confidence. 

First consider torsion in one dimension, such as on a torsion wave machine or a stretched-
out rubber band [Figure 3.8]. A torsion wave machine has at least one intriguing parallel with 
particle physics. If one rotates a single rod near the center of the wire, a right-handed twist 
propagates in one direction and a left-handed twist propagates in the other direction, analogous 
to the production of particles and anti-particles. In every known physical process, anti-matter 
behaves like a mirror image of matter. Another interesting property of 1-D rotations is that there 
is a natural distinction between rotations of odd and even multiples of π , analogous to the 
distinction between odd (fermions) and even (bosons) multiples of the unit angular momentum 
2! . The notion that torsion should be associated with matter is in fact widely accepted [Kleinert 

1989].Therefore there is reason to believe that a mathematical analysis of torsion waves might 
provide some clues to the interpretation of quantum mechanics. This analogy was explored by 
Close [2002]. 

 
Figure 3.8  Rotation of a single bar on a torsion wave machine results in mirror-symmetric waves 

propagating in opposite directions. This is a one-dimensional analogue of production of particles and anti-
particles. Matter and anti-matter are similarly produced in pairs, and behave physically as mirror images of 

one another. 
 

If the moment of inertia per unit length is I, and the torsion spring constant of the wire (or 
rubber band) is K, then the wave equation is given by: 

( ) ( )
2

2

2

2 ,,
z
tzK

t
tzI

∂

Θ∂
=

∂

Θ∂

 (3-18) 

where ( )tz,Θ  is the orientation at axial position z and time t. The wave speed is given by 

IK=c .  

Left-handed Right-handed 
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As with displacement waves, a unique frequency and wavelength cannot be defined for 
torsion waves unless many cycles are produced in succession. If one end of the wave machine is 
rotated at a constant rate ω , the torsion waves propagate along the machine with uniform 
wavelength ωλ c= . Each rod along the machine rotates with the constant driving frequency ω . 
The angular momentum per unit length ℓ  is therefore zIcIckI ∂Θ∂=== ωℓ . The angular 
momentum is therefore proportional to the spatial derivative of the angle. The angular 
momentum of a twist from 0 to 0Θ  can be obtained by integrating over angle: 
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z  (3-19) 
Thus we see that the total angular momentum of a twist is proportional to the rotation angle and 
independent of frequency.  

A twist propagating with constant wavelength has no torque, so the kinetic and potential 
energies remain constant as the wave propagates. The kinetic energy per unit length is 

2/2ωI and the potential energy per unit length is ( ) 2//2/
2
1 2222 ωλπ IKzK ==∂Θ∂ .  

Integration from 0 to 0Θ  yields for the total energy: 
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The wave energy is equal to the wave angular momentum times the angular frequency. This 

is analogous to the energy quantum of ω! . At this point we make the identifications: 
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 (3-21) 

so that the wave equation is simply: 
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 (3-22) 

Incidentally, although we have been describing torsion waves along a thin wire, the equation is 
valid for torsion waves in a thick cylindrical rod (see e.g. Feynman et al. [1963b]). 

The case of a thin elastic rod has been studied by Matsutani and Tsuru [1992], who 
interpreted nonlinear waves as fermions. We will also arrive at a fermionic interpretation of 
nonlinear waves when we study an infinite 3-D elastic solid below. 

 Now we will take a look at the classical wave equation to see if it can be applied to the 
study of matter. We will start with one-dimensional waves as above, then generalize to three 
dimensional scalar and vector waves. 
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3.3. One-Dimensional Scalar Waves 
"I have deep faith that the principle of the universe will be beautiful and simple." 
   —Albert Einstein 
 

Consider a scalar quantity (a) which satisfies a wave equation with wave speed (c) in one 
spatial dimension (z): 

aca zt
222 ∂=∂  (3-23) 

This equation can be factored: 

[ ][ ] 0=∂−∂∂+∂ acc ztzt  (3-24) 

The general solution is a superposition of forward ( Fa ) and backward ( Ba ) propagating waves: 

( ) ( ) ( )ctzactzatza ++−= BF,  (3-25) 

This form of the solution to the one-dimensional wave equation can be found in any elementary 
textbook on waves. We can write the equations for forward and backward waves in matrix form: 
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The spatial derivatives are related to the temporal derivatives: 
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Let aa t∂≡!  and aa z∂≡ʹ′ . We now define a wave function in terms of the time derivatives: 
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The wave equation for the forward and backward waves is now: 
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 (3-29) 
We have now reduced the second-order wave equation to a first-order matrix equation.  

3.3.1. Spinors and Bispinors 
If we regard the z-axis as one of three orthogonal axes, then the two independent components 

Fa!  and Ba!  differ by a 180 degree rotation. This is the definitive property of independent states 
in spin one-half systems. Unfortunately, this property is de-emphasized (or even unrecognized) 
in the physics literature in favor of the more exotic property that complex spinors change sign 
upon 360 degree rotation. This latter property does not apply to physical observables which are 
computed from bilinear products of spinors. However, the separation of independent states by 
180 degrees does apply to wave velocity, implying that solutions of the wave equation generally 
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form spin one-half systems. Note that unlike positive and negative scalars or vector components 
(which can also be expressed as bilinear products of spinors), waves with positive and negative 
velocity are not related by a multiplicative factor of minus one. The forward and backward 
waves are independent states [Figure 3.9]. The mathematical basis of this property is that wave 
velocity is a property of the functional arguments and is not simply an amplitude. 

 
Figure 3.9  Waves propagating in opposite directions along an axis comprise independent 

states separated by a 180°  rotation. This is the basis of half-integer spin. 
 

The relationship between waves and spinors can be made explicit as in Close (2002) by 
further decomposition into positive-definite components ( )−−++ BFBF ,,, aaaa !!!!  or 
( )−−++ ʹ′ʹ′ʹ′ʹ′ BFBF ,,, aaaa  representing positive (+) or negative (−) contributions to the wave 
derivatives: 

 ( ) ( ) ( ) ( ) ( )ctzactzactzactzatza +−++−−−= −+−+ BBFF, !!!!!  (3-30) 

and 

( ) ( ) ( ) ( ) ( )[ ]
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From here on the functional arguments will not be written explicitly. Note that the positive-
definite components may have discontinuous derivatives where the original signed quantities 
pass continuously through zero. For example, to make the time derivatives continuous requires 
matching conditions for a! : 
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  (3-32) 
Similar relations hold for the backward wave components. Such discontinuities do not affect 

the validity of the first order equations. However, higher derivatives may be undefined at some 
points. 

Since each component has a unique sign, we can express a! and aʹ′  in spinorial form with the 
one-dimensional wave function vψ  (the subscript ‘v’ refers to the velocity axis): 
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where the superscript T indicates transposition of the column matrix and the matrix βσ  tabulates 
the forward and backward velocities (v): 
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This wave function is a one-dimensional bispinor. In one dimension the components of the 
bispinor may be taken to be real and positive-definite. Extension to three dimensions requires 
complex components.  

Changing the order of terms in the wave function is called a change of ‘representation’. A 
few important points are: 
1.  The components of the column matrix wave function are real and positive-definite.  

2.  Only one forward component and one backward component can be non-zero at any given 
time and place (for one-dimensional waves). 

3.  The spatio-temporal variation of each component must be consistent with its location in the 
column matrix.  

Since some of the components must be zero, let Fδ  and Bδ  be either zero or one. Then the wave 
function is: 

[ ] [ ][ ]TF
21
FB

21
B

21
BF

21
Fv 11 δδδδψ −−= aaaa B !!!!  (3-35) 

Using Lorentz boosts, the wave function can be written as: 

( ) [ ] [ ][ ] 2112exp T
FF

21
0v δδδδαβσψ −−= BBa!  (3-36) 

This form has two independent continuous parameters and two binary parameters. 
The equation of evolution of the wave components is: 

0vv =∂+∂ ψβσψ zt c  (3-37) 
This is the one-dimensional Dirac equation. This equation can be interpreted as a convective 
derivative with two opposite velocities represented by the matrix v=cβσ.  
 The relation between one dimensional bispinor equations and scalar wave equations is 
summarized in Table 3-I. 
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Table 3-I  Corresponding Bispinor and Scalar Wave Equations in One Dimension 

Bispinor Equation Scalar Equation 
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v =∂+∂ βψψσψψ zt c  0222 =∂−∂ aca zt  
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v =∂+∂ ψψβσψψ zt c  0=∂∂+∂∂+∂∂−∂∂ BtzFtzBztFzt acacacac  

3.3.2. Wave Velocity 
The mean velocity (v) of the wave is proportional to the ratio between the difference and sum 

of the forward and backward components [Close 2002]: 
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Since Fa!  and Ba!  are positive-definite, we can define them by the relation: 

( )
( )α
α

−=

=

exp

exp

0

0

aa

aa

B

F

!!

!!

 (3-39) 

so that our definition of velocity is: 
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If we start from a zero-velocity state with 0BF aaa !!! == , then we can change the velocity 
using the ‘Lorentz boost’ operator ( ( ) vv 2exp ψαβσψ → ): 
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 (3-41) 
Note that successive boosts preserve the form of the operator: 

( ) ( ) [ ]( )2exp2exp2exp 2112 ααβσαβσαβσ +=  (3-42) 
This property enables us to recover the relativistic equation for addition of parallel velocities: 
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This result is another example of how the laws of special relativity apply to classical waves in 
ordinary Galilean space-time, as discussed in Chapter 2.  

Using Lorentz boosts, the wave function can be written as: 

( ) [ ] [ ][ ]TBBa δδδδαβσψ −−= 112exp
2
1

FF
21
0v !  (3-44) 

This form has two independent continuous parameters and two binary parameters. 

3.4. Three Dimensional Scalar Waves 
"... in quantum phenomena one obtains quantum numbers, which are rarely found in mechanics 
but occur very frequently in wave phenomena and in all problems dealing with wave motion." 
— Louis de Broglie [1963] 

3.4.1. Rotation of Gradient and Velocity 
The spatial derivative z∂  generalizes in three dimensions to a arbitrary direction v∂ , where 

the index (v) represents an arbitrary direction. Wave velocity is defined to be parallel to the 
gradient. Since the matrix βσ  is associated with a particular axis, it must be one component of a 
vector. We can let the matrix 3ββ =   and define the gradient matrix components as: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1000
0100
0010
0001

,

00i~0
000i~
i~000
0i~00

,

0010
0001
1000
0100

321 βββ

 (3-45) 

The symbol ( i~ ) represents a unit pseudoscalar imaginary which is odd (changes sign) with 
respect to spatial inversion. This property is necessary because velocity is a polar vector and: 

321i~ βββ=  (3-46) 

We must now allow the wave function to have complex components. These matrices have 
commutation relations equivalent to the Pauli matrices: 

ijijji δββββ 2=+  ;  kijkijji βεββββ i~2=−  (3-47) 
An elegant way to write these commutation relations is: 

jijiji ββββββ ×+⋅= i~  (3-48) 
where: 
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[ ]

[ ]ijjiji

ijjiji

ββββββ

ββββββ

−−=×

+=⋅

2
i~

2
1

	  

 (3-49) 

Hence we can regard these matrices as basis vectors whose commutation relations express their 
relative orientation. This idea is the basis for the mathematical field of geometric algebra. Notice 
that the unit imaginary now has a geometrical interpretation as the product of three orthogonal 
unit vectors (i.e. an oriented unit volume): 

[ ] [ ] i~i~i~ 32132321321 =×⋅=×+⋅= βββββββββββ  (3-50) 

The rotation operators for this space have the form: 

( ) ( ) ( ) [ ] iijjiijiijiiij
R ζββββζβζββζβζβ sin

2
i~cos2i~exp2i~exp −−=−=  (3-51) 

which can be written in vector form: 

( ) ( ) ( ) [ ] iR ζζζβζβ ζζζ sincos2i~exp2i~exp ββββζσ ×+=−=  (3-52) 

To include rotations, the one-dimensional derivative vvvv ψβψ Tac −=∂  must be modified to 
include orientation. This orientation is computed relative to the 3x -axis. Using the definitions: 

( ) ( )[ ]
( )

( )2i~exp

2i~exp

2i~exp2i~exp

v
†

v

3v

ζβ

ζβ

ζβζβ

⋅=

⋅−=

⋅⋅−=

Tψψ

ψψ

ββ

 (3-53) 
The wave function now has complex components. The rotation operator 
( ) ( ) vv 2i~exp ψψ ζβζ ⋅−=R  applied to the one-dimensional wave function inverts the rotation of 

the basis vectors so that the derivative can be evaluated using the one-dimensional real-valued 
matrix 3β  and wave function vψ . 
The spatial derivative is: 

ψβψψβψ v
†

v3vv −=−=∂ Tac  (3-54) 

Since the beta matrices are mutually orthogonal, the components of ψψ β†  perpendicular to 

vx  must be zero. Therefore the three dimensional gradient is: 

ψψψβψ β†v3vvˆ −=−=∇ Teac  (3-55) 
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3.4.2. Successive Rotations 

 Successive rotations can be performed using either fixed axes or embedded axes. The 
result of successive rotations about fixed axes depends on the order in which the rotations are 
taken. For example, successive rotations of 2π  about the 1x - and 2x -axes move 3e  to either  

2e−  or 1e+ , depending on the order. Hence: 

( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( ) 112321

221312

24i~exp4i~exp4i~exp4i~exp

4i~exp24i~exp4i~exp4i~exp

βπβπββπβπβ

βπβπββπβπβ

=−−

−=−−

 (3-56) 

Here the expression inside the square brackets is evaluated first, followed by applying the 
rotation operator outside the square brackets. If we interpret these rotation operators as acting on 
spinors then the order appears to be backward. The expression: ( ) ( )ψπβπβ 4i~exp24i~exp 21  
represents spinor rotation of 2π−  about the 1x -axis followed by rotation about the 2x -axis.  

3.4.3. Euler Angles 
We can put the operations back in order if we consider the second rotation operator to 

have been rotated along with the wave function by the first one: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2i~exp2i~exp2i~exp 1211
1

212 ΘβΘβΘβΘΘΘΘ ⋅⋅−⋅−==ʹ′ −RRRR  (3-57) 

Two successive rotations yields: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )2i~exp2i~exp 2111
1

2112 ΘβΘβΘΘΘΘΘΘ ⋅⋅==ʹ′ − RRRRRR  (3-58) 

Axes which are rotated along with the spinors are called embedded axes. Rotation angles which 
refer to embedded axes are called Euler angles. We use primes to denote rotations about 
embedded axes.  

The Euler rotation operator ( )2ΘRʹ′  can be interpreted as follows: First, rotate the spinor 
back to its original orientation. Next, rotate the spinor about the fixed axis corresponding to 2Θ . 
Finally, rotate again about the embedded axis corresponding to 1Θ  (the original axis now rotated 
by   2Θ ). The equation states that rotation by 11 ΘΘ ʹ′=   followed by rotation about the fixed axis 

2Θ  is equivalent to rotation first by 2Θ  followed by rotation by 1Θʹ′  about the embedded 1Θ̂ ʹ′  
axis. In the above example, rotation by 2π  about x followed by 2π about z (or yʹ′ ) is 
equivalent to rotation by 2π  about z followed by 2π about y (or xʹ′ ). 

The angular derivative of the wave function is: 

( )[ ] ( ) ( ) ( )ψψψψ ⎥⎦

⎤
⎢⎣

⎡ ⋅⋅−−=⋅−−=⋅−∂=∂ 2i~exp
2

2i~expi~
2

2i~expi~2i~exp vv φββφββφβφβφφ
 (3-59) 

It is customary in quantum mechanics to define the angular derivative to be: 

ψψ
2
i~ βφ −=∂ ʹ′

 (3-60) 
This relation is only valid if the angle ϕʹ′  is measured with respect to the embedded axes. 
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Accumulated rotations can be computed from successive rotations about embedded axes. 
Given a rotation rate w΄(t) with respect to embedded axes, the accumulated rotation operator is: 

( ) ( )( ) ( ) ( )2i~exp2i~exp wβΘβΘ ʹ′⋅∫=ʹ′⋅=ʹ′= dttRtR  (3-61) 

3.4.4. Examples 
Let us verify this expression with explicit examples. First, we compute the general 

expression for rotation about two successive embedded axes: Rotate by angle aθʹ′  about an axis 

axʹ′  followed by  bθʹ′  about  bxʹ′ . The rotation operator is: 

( ) ( )( ) ( ) ( )

⎥⎦

⎤
⎢⎣

⎡ ʹ′ʹ′
+

ʹ′ʹ′
+

ʹ′ʹ′
−

ʹ′ʹ′
=

⎥⎦

⎤
⎢⎣

⎡ ʹ′
+

ʹ′
⎥⎦

⎤
⎢⎣

⎡ ʹ′
+

ʹ′
=

ʹ′ʹ′=ʹ′=

2
cos

2
sin

2
sin

2
cosi~

2
sin

2
sin

2
cos

2
cos

2
sini~

2
cos

2
sini~

2
cos

2i~exp2i~exp

ab
b

ab
a

ab
ab

ab

a
a

ab
b

b

aabbtRtR

θθ
β

θθ
β

θθ
ββ

θθ

θ
β

θθ
β

θ

θβθβΘ

 (3-62) 

Recall that bababa ββββββ ×+⋅= i~ . We consider two special cases. First, if aθʹ′  and bθʹ′  are 
parallel then: 

( )( )

⎟
⎠

⎞
⎜
⎝

⎛ ʹ′+ʹ′
+⎟
⎠

⎞
⎜
⎝

⎛ ʹ′+ʹ′
=

⎥⎦

⎤
⎢⎣

⎡ ʹ′ʹ′
+

ʹ′ʹ′
+

ʹ′ʹ′
−

ʹ′ʹ′
=ʹ′

2
sini

2
cos

2
cos

2
sin

2
sin

2
cosi

2
sin

2
sin

2
cos

2
cos

ab
a

ab

abab
a

ababtR

θθ
β

θθ

θθθθ
β

θθθθΘ

 (3-63) 

which is obviously correct since parallel angles are additive. Next consider two perpendicular 
axes with cab βββ i~= : 

( )( ) ⎥⎦

⎤
⎢⎣

⎡ ʹ′ʹ′
+

ʹ′ʹ′
+

ʹ′ʹ′
+

ʹ′ʹ′
=ʹ′

2
cos

2
sin

2
sin

2
cosi~

2
sin

2
sini~

2
cos

2
cos ab

b
ab

a
ab

c
abtR θθ

β
θθ

β
θθ

β
θθΘ

 (3-64) 

For the special case where both angles are 2π  this yields: 

( )( )

( ) ( )3sin
3

i~3cos
2

i~
2
1

4
cos
4

sin
4

sin
4

cosi~
4

sini~
4

cos 22

π
βββ

π
βββ

ππ
β

ππ
β

π
β

π

cbacba

bactR

++
+=

++
+=

⎥⎦

⎤
⎢⎣

⎡ +++=ʹ′Θ

 (3-65) 

This corresponds to a rotation operator for 32π  radians about the axis [ ] 3ˆˆˆ cba xxx ++ . 
The validity of this result can be verified by picturing an equilateral triangle with corners on each 
axis equidistant from the origin. Clearly rotation by 32π  about the center of the triangle merely 
permutes the positions of the axes, which is of course what happens when rotating by 2π  
around successive orthogonal axes. Note also that the symmetry of the final result implies that: 
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( ) ( ) ( ) ( )
( ) ( )4i~exp4i~exp

4i~exp4i~exp4i~exp4i~exp

πβπβ

πβπβπβπβ

zx

yzxy

=

=
 (3-66) 

 (x followed by yʹ′ , y followed by zʹ′ , z followed by xʹ′ ) which is consistent with our explanation 
of the secondary rotation operator above.  

3.4.5. Wave Function 
In three dimensions the gradient can be defined as a one-dimensional derivative rotated by 

angle ζ  to a new axis v̂ . Let: 

( ) ( )
( ) v

3v

2i~exp

2i~exp2i~exp

ψψ

ββ

ζβ

ζβζβ

⋅−≡

⋅⋅−≡

 (3-67) 

Rotation by angle ζ  is denoted ζR  and defined relative to a default orientation along the 3x  
axis. The three-dimensional gradient is: 

ψψψβψ βvxζ
†

v3v
3

3 ˆˆ cc
x
aRa T −=−=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

=∇
 (3-68) 

Writing a column matrix as the transpose of a row matrix, the rotated wave function ψ   is: 

( ) ( ) [ ] [ ][ ] 2112exp2i~exp FF3
21
0

T
BBa δδδδσαβψ −−⋅−= ζβ!  (3-69) 

However, in three dimensions the constant column matrix which represents 03 =v  states 
may have nonzero velocity perpendicular to 3x . This is indeed the case for 

[ ] 201010
T=ψ  and [ ] 210100

T=ψ . The remaining states with zero velocity 
are obtained by rotation of velocity from: 

 [ ] 210010
T=ψ  (3-70) 

This state has zero time derivative but nonzero gradient. When Lorentz boosts are applied both 
the time derivative and velocity can be non-zero. The final form of the wave function is thus: 

( ) ( ) 03
21
0 2exp2i~exp ψασβψ ζβ ⋅−= a!  (3-71) 

This is the general form of the scalar wave function. The constant matrix is multiplied by 
factors representing an amplitude, a 1-D velocity boost, and a general rotation in velocity space 
(two angles to determine velocity direction plus rotation about the velocity axis). Clearly four 
parameters are needed to determine at∂  and a∇ . The significance of rotation about the velocity 
axis will be discussed below.  

3.4.6. First-Order Wave Equation 
The time derivative of (3-67) yields the first-order equation: 
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( ) ( ) vv 2i~exp
2
i~2i~exp ψψψ ttt ∂⋅−+⋅∂⋅−−=∂ ζββζζβ

 (3-72) 
Here we can see the effect of rotation about the velocity axis. Rotation of the left-hand side 
involves only direct rotation of the wave function, but rotation of the right-hand side also 
involves rotation of the angular frequency ζt∂ . Rotation about the velocity (or gradient) axis can 
change the direction of this angular frequency. This is the significance of the fifth parameter in 
the factorization above. 

Inverting the rotation factor yields the one-dimensional wave function, which satisfies the 
one-dimensional wave equation: 

[ ] ( )[ ] 02i~expˆ3 =⋅∇⋅+∂ ψσβ ζβvct  (3-73) 

Derivatives of the exponential factors are: 

( ) ( ) [ ]

( ) ( ) [ ]ζβζβζβ

ζβζβζβ

⋅∇⋅=⋅∇

⋅∂⋅=⋅∂

2i~exp
2
i~2iexp

2i~exp
2
i~2iexp tt

 (3-74) 

Substituting ( ) ( ) ∇⋅⋅=∇⋅⋅ βζβvζβ σσβ 2i~expˆ2i~exp3  into (3-73) yields: 

ψσψψσψ ⎥
⎦

⎤
⎢
⎣

⎡
⋅∇⋅−⋅−∂=∇⋅+∂
2
i~

2
i~ βζββζβ cc tt

 (3-75) 

This equation states that the convective derivative is nonzero only due to (convective) rotation of 
velocity direction.  

The equation of evolution of the scalar wave amplitude is obtained by multiplying σψ †  and 
adding the adjoint: 

[ ]

[ ] [ ]ψψψψ

ψσψψσσψ

σψψσψψσσψψ

βζβ

βζββζβ

βζββζβ

††

†

†
†

2
i~

2
i~

2
i~

2
i~

⋅×∇+⋅−∇=

⎭
⎬
⎫

⎩
⎨
⎧

⋅∇⋅−⋅
∂
∂

−∇⋅−+

⎭
⎬
⎫

⎩
⎨
⎧

⋅∇⋅−⋅
∂
∂

−∇⋅−=∂

cc

c
t

c

c
t

ct

 (3-76) 

In terms of the scalar polarization, this equation is: 

[ ] acacat ∇⋅×∇−∇=∂ ζ2222
 (3-77) 

The relations between rotation angles and velocity unit vectors are: 
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[ ]
[ ] [ ]

[ ] [ ][ ] [ ] [ ]∇×⋅∇×=∇⋅∇⋅−∇=∇⋅×∇

∇⋅−⋅∇=×∇

×∇⋅−=⋅∇

∂×=∂

vvvv
2

vvvv

vv

vv

ˆˆˆˆ

ˆˆˆˆ
ˆˆ

ˆˆ

eeee

eeee
ee

ee tt

ζ

ζ
ζ
ζ

 (3-78) 

So that the above equation is indeed equivalent to the one-dimensional wave equation: 

[ ][ ]aeecat ∇⋅∇⋅=∂ vv
22 ˆˆ  (3-79) 

If we want to obtain the conventional 3D scalar wave equation: 

acat
222 ∇=∂  (3-80) 

Then the simplest corresponding first order equation is: 

0=∇⋅+∂ ψσψ βct  (3-81) 

3.5. Vector Waves 
"Quantum mechanics is certainly imposing. But an inner voice 
tells me that it is not yet the real thing. The theory says a lot, but 
does not really bring us any closer to the secret of the "Old One." 
I, at any rate, am convinced that He is not playing at dice. Waves 
in three-dimensional space whose velocity is regulated by potential 
energy (for example, rubber bands) . . ." 
− Albert Einstein, 1926 [Einstein and Born 2005]  

 
Next we consider vector waves (polar or axial vectors). An arbitrary polarization vector can 

be described by a scalar amplitude and three rotation angles. Since scalar waves require five 
parameters, we expect vector waves to require eight parameters. As with velocity rotations, only 
two angles are necessary to determine the direction of polarization, but a third angle is necessary 
for a local description of changes in the polarization direction. 

3.5.1. Rotation of Polarization 

Recall that the scalar polarization is σψψ Ta =! .  We now regard this as one component of a 

vector: ψσψ 33
Ta =! . The vector a could be polar or axial, but we will assume an axial vector 

(pseudovector). The three orthogonal polarization matrices are: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1000
0100
0010
0001

,

0i00
i000
000i
00i0

,

0100
1000
0001
0010

321 σσσ

 (3-82) 

The symbol ( i ) is a unit scalar imaginary which is even under spatial inversion since the spin is 
a pseudovector. 
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These matrices have the same commutation relations as the Pauli matrices: 

ijijji δσσσσ 2=+  ;  kijkijji σεσσσσ 2=−  (3-83) 

The rotation operators for this space are similar to the velocity matrix rotation operators: 

( ) ( ) ( ) [ ] iijjiijiijiiij
R ξσσσσξσξσσξσξσ sin

2
icos2iexp2iexp −−=−=

 (3-84) 

We could simply generalize the wave function to be:	  

( ) ( ) ( ) 03
21
0 2exp2i~exp2iexp ψασβψ ζβξσ ⋅−⋅−= a!  (3-85) 

We might then attempt the interpretation: 

ψσβψ jijiS
†−=∂  (3-86) 

However, there are nine tensor components (plus three components of the time derivative) and 
only eight independent components of the bispinor. Therefore this interpretation is not 
satisfactory unless additional constraints are imposed. 

Instead, we will assume a single rotation operator for both wave velocity and polarization. 
Since the one-dimensional velocity is 33σβcv = , the three-dimensional velocity for vector 
waves is σv 3βc= . The β  matrices which described velocity for scalar waves now represent 
directions relative to velocity, with 3β  representing the parallel direction. This notation is called 
the “chiral representation” of velocity.  

Alternatively, we could associate any of the matrices iβ  with velocity by rotating in the 
relative-velocity space of β  matrices. Such a rotation is called a change of “representation”. The 
form σv 1βc=  has the form originally used by Dirac, and we will use these matrices for 
velocity. Historically, a different notation has been used for the β  matrices. Instead of 

( )321 ,, βββ , these matrices have been called ( )0055 ,i, γγγγ . However, we will continue to call 
them β  matrices except when comparing with standard results from other literature. 

3.5.2. Factorization and First-Order Wave Equation 
The three-dimensional bispinor wave function may have a Lorentz boost with arbitrary 

magnitude and direction, and may also be rotated by an arbitrary angle ξ . These operators are 
contained in the factorization: 

( ) ( ) 01
21
0 2exp2iexp ψβψ ασξσ ⋅⋅−= a!  (3-87) 

The wave function has seven free parameters: an amplitude, three rotation angles, and three 
velocity parameters. There is one additional degree of freedom which determines the definition 
of the relative directions 2β  and 3β . These are defined with respect to the velocity axis by the 

operator ( ) 01 2i~exp ψζβ , so that the wave function is [Hestenes 1967]: 

( ) ( ) ( ) 011
21
0 2i~exp2exp2iexp ψζββψ ασξσ ⋅⋅−= a!  (3-88) 
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Now we would like to know the equation of evolution of the wave function. Generalizing the 
scalar wave equation (3-73) to include arbitrary gradient direction yields: 

ψβψ ∇⋅−=∂ σ1ct  (3-89) 
These terms account for wave propagation in an arbitrary direction.  

To see the wave equation in terms of observables, multiply jσψ †  and add the transpose 
equation to obtain the time derivative of the polarization: 

[ ] [ ] [ ]ψβψψβψψβψψψ ∇×+×∇−∇−=∂ σσσ 1
†

1
†

1
†† i cct  (3-90) 

The terms in this equation are naturally associated with spinors by the following definitions: 

[ ]
[ ] [ ]

{ } { }ψσβψψσβψε

ψβψ

ψσψ

ikkiijkj

jj

jtjt

cc

cc

a

∂−∂−≡×∇×∇

∂−≡⋅∇∂

∂≡∂

1
†

1
†2

1
†2

†2

ia

a

 (3-91) 

These identifications yield the wave equation: 

aa 222 ∇=∂ ct  (3-92) 

   

[ ] [ ] 0†
1

† =⋅∇+∂ ψψψβψ σct  (3-93) 

This relation is easily derived from equation (3-89). 

Also from (3-89): 

[ ] [ ] 01
†2† =⋅∇+∂ ψβψψψ σct  (3-94) 

This is the quantum mechanical continuity equation. This is the three dimensional generalization 
of the 1-D equation: 

022 =∂∂−∂∂+∂∂+∂∂ BzzFzzBttFtt acacaa  (3-95) 

3.5.3. Convection and Rotation 
Adding terms for convection and rotation to the bispinor wave equation yields: 

ψψψβψ φwuσ ∂⋅−∇⋅−∇⋅−=∂ 1ct  (3-96) 

From the wave factorization we can substitute minus the angular derivative (for passive rotation) 
in the final term: 

ψψψβψ
2

i1
σwuσ ⋅−∇⋅−∇⋅−=∂ ct

 (3-97) 
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To see the wave equation in terms of observables, multiply jσψ †  and add the transpose equation 
to obtain the time derivative of the polarization: 

∂t ψ
†σψ#$ %&= −c∇ ψ †β1ψ#$ %&+ i cεijk ∂iψ

†β1σ kψ −ψ
†β1σ k∂iψ#$ %& ê j

−u ⋅∇ ψ †σψ#$ %&+w× ψ †σψ#$ %&
 (3-98) 

These identifications yield the equation of a wave propagating in a moving medium: 

awauaa !! ×+∇⋅−∇=∂ 222 ct  (3-99) 
Using equation (3-97) now yields different continuity conditions: 

[ ] [ ] [ ] 01
††2

1
† =∇⋅+⋅∇+∂ ψβψψψψβψ uσct  (3-100) 

Consistency with our definition of variables requires that: 

[ ] 01
† =∇⋅ ψβψu  (3-101) 

Also from (3-97): 

[ ] [ ] [ ] 0†
1

†2† =∇⋅+⋅∇+∂ ψψψβψψψ uσct  (3-102) 

The continuity equation now includes an additional convection term. 
Next, we will interpret the wave polarization. 

3.6.  Waves in an Elastic Solid 
"I am never content until I have constructed a mechanical model of the subject I am studying. If I 
succeed in making one, I understand; otherwise I do not."  
− William Thomson (Lord Kelvin) 1904  
 

In this section we will analyze rotational, or torsion, waves in an ideal elastic solid. This 
section is based on previously published work by the author. The basic ideas were published in 
Close [2008] and the full Lagrangian and dynamical operators were published in Close [2011a]. 
 

3.6.1. Basic Assumptions 
We make the following basic assumptions:  

1.  The elastic solid is characterized by an inertial density ρ  and coefficient of elasticity µ , 
with characteristic wave speed ρµ=c .  

2. There is a linear response to variations of orientation angle Θ  relative to equilibrium. This 
means that an initial static perturbation (with velocity u=0) would yield the response: 

( )0 if222 =∇=∂ uΘΘ ct  (3-103) 
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3.  The velocity field u has no compression: ∇⋅u = 0 . Therefore the velocity may be written as 
the curl of a vector field: 

 u = 1
2ρ

∇×S[ ]  (3-104) 

The vector field S is called the spin angular momentum density. It differs from the conventional 
definition of angular momentum density r×ρu  in that it is independent of the choice of origin 
and can have arbitrary direction at any point. If |u| falls to zero sufficiently rapidly toward 
infinity, then kinetic energy may be expressed as: 

 K = d3rρu2 2∫ =
1
2

d3∫ r w ⋅S   

where w =∇×u 2  is the angular velocity, or vorticity (see Chapter 1).  

Additional assumptions will be introduced in order to simplify the mathematics, and these 
may limit the generality of the results. 

3.6.2. Equation of Evolution 
Starting from (3-165), we define an angular potential Q such that: 

ΘQ ρ42 −=∇  (3-105) 

The static condition for Q is: 

{ } ( )0 if02222 ==∇−∂∇ uQQ ct  (3-106) 

Define the spin angular momentum as: 

QS t∂≡  (3-107) 

The static condition is then: 

{ } ( )0 if0222 ==∇−∂∇ uQS ct  (3-108) 

When motion is present, it contributes to the time derivative only through convection ( Su ∇⋅− ) 
and rotation ( Sw × ). This assumes that there are no velocity-dependent forces such as frictional 
damping. From here on, we will consider only wave-like solutions satisfying: 

∂tS− c
2∇2Q+u ⋅∇S−w×S = 0  (3-109) 

For oscillatory solutions to this equation, the first two terms are always in phase ( )QQ 222 ∇−∂ ct , 
whereas the nonlinear term may have different phase. However, if the nonlinear term is not zero 
then it must have the same phase as the linear terms:  

u ⋅∇−w×S =Ω2 r( )Q  (3-110) 

where ( )r2Ω  is some function of position (more generally, ( )r2Ω  could have different values 
for each component of Q). Substitution yields: 
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( ) 02222 =Ω+∇−∂ QrQQ ct  (3-111) 

If ( )r2Ω  is constant and positive, then this is the Klein-Gordon equation, which is ordinarily 
associated with bosons. 

The wave equation (3-109) can be written in terms of a four-component complex Dirac 
bispinor (ψ ) using the following identifications: 

[ ]
[ ] [ ]

{ } { }ψσβψψσβψε

ψβψ

ψσψ

ikkiijkj

jj

jtjt

cc

cc

Q

∂−∂−≡×∇×∇

∂−≡⋅∇∂

∂≡∂

1
†

1
†2

1
†2

†2

2
i

2
1

2
1

Q

Q

 (3-112) 

The matrices jc σβ1  are the Dirac velocity matrices, more conventionally denoted as jc σγ 5 .  

The above identifications provide 7 constraints on the 8 free parameters of the Dirac 
bispinor. In terms of bispinors, the rotational wave equation (3-Error! Bookmark not defined.) 
is: 

1
2
∂
∂t

ψ †σ jψ"# $%+
1
2
c∂ j ψ

†β1ψ"# $%−
1
2
icεijk ∂iψ

†β1σ kψ +ψ
†β1σ k∂iψ{ }

+
1
2
u ⋅∇ ψ †σ jψ"# $%−

1
2
εkijwk ψ

†σ iψ"# $%= 0
 (3-113) 

Expanding the derivatives yields: 

1
2
ψ †σ j ∂tψ + cβ1σ ⋅∇ψ +u ⋅∇ψ +w ⋅

iσ
2
ψ

%

&'
(

)*
+ h.c. = 0  (3-114) 

where (h.c.) represents the Hermitian conjugate. The Hermitian conjugate wave function may be 
regarded as an independent variable (the independent real and imaginary parts of the wave 
function are linear combinations of elements of ψ  and  †ψ ). Validity for arbitrary †ψ  requires 
the terms in brackets to sum to zero. This yields the Dirac equation: 

∂tψ + cβ1σ ⋅∇ψ +u ⋅∇ψ +w ⋅
iσ
2
ψ + i χψ = 0  (3-115) 

where χ  may be any operator with the property: 

Re ψ †σ j i χψ( ) = 0  (3-116) 

Since χ  does not contribute to angular momentum density, we assume it to be zero. 

For convencience, we multiply the Dirac equation by the unit imaginary times the adjount wave 
function: 
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ψ † i∂tψ +ψ
† icβ1σ ⋅∇ψ +ψ

†u ⋅ i∇ψ −ψ †w ⋅ σ
2
ψ = 0  (3-117) 

Now we construct a Lagrange density. Lagrange’s equations of motion for a field variable ψ   
are: 

∂t
∂L

∂ ∂tψ
†"# $%
+ ∂ j

∂L

∂ ∂ jψ
†"# $%j

∑ −
∂L
∂ψ † = 0   (3-118) 

A similar equation holds with ψ replacing ψ † . It is possible to construct a Lagrangian with no 
derivatives of ψ † , so that the equation of motion is simply ∂L ∂ψ † = 0 . The nonlinear terms 
(with u and w) contain two factors of ψ † . In the rotation term, these may be interchanged using 
integration by parts. Therefore this term requires a factor of one-half in the Lagrangian. In the 
convection term, however, integration  by parts yields a term containing ∇⋅u . Since this is zero, 
the factor of ψ †  contained in it does not contribute to the Euler-Lagrange equation. 

Hence we obtain: 

L =ψ † i∂tψ +ψ
† icβ1σ ⋅∇ψ +ψ

†u ⋅ i∇ψ − 1
2
ψ †w ⋅ σ

2
ψ  (3-119) 

This Lagrangian is not real, but we may take the real part as representing physical quantities. 
Notice that the final term represents minus the kinetic energy, so this is not the classical form (K-
U). This will require some care with the signs of conjugate momenta. 

The conjugate momentum to the field †ψ is ψp : 

pψ =
∂L

∂ ∂tψ[ ]
= iψ †  (3-120) 

We recognize the last term in the Lagrangian as the kinetic energy density K. A consistent 
(when integrated) interpretation of the other terms is: 

Re ψ † i∂tψ +ψ
† icβ1σ ⋅∇ψ +ψ

†u ⋅ i∇ψ{ }− 1
2
ψ †w ⋅ σ

2
ψ = 0

E − v ⋅p − u ⋅p −
1
2
u ⋅q = 0

 (3-121) 

where u and q are the velocity and momentum of the medium, respectively, while v and p are the 
velocity and momentum of the wave, respectively. There is no v ⋅q  term, presumably because 
the wave is transverse (wave velocity orthogonal to medium velocity). The wave energy and 
momentum density are taken to be: 

E = Re ψ † i∂tψ{ }
p = −Re ψ † i∇ψ{ }

 (3-122) 
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These will be derived below. Since the v ⋅p  term involves only spatial derivatives of the wave 
function, it is more appropriate to interpret it as elastic potential energy density U: 

E −U −u ⋅p−K = 0  (3-123) 

The convection term transports momentum and energy, but we hypothesize that it 
integrates to zero, thereby having no effect on the total energy. 

 

3.6.1. Dynamical Variables 

Energy and momentum 
The Hamiltonian is: 

H = pψ∂tψ −L = −ψ † icβ1σ ⋅∇ψ −ψ
†u ⋅ i∇ψ + 1

2
ψ †w ⋅ σ

2
ψ =U +u ⋅p+K  (3-124) 

Hamilton’s equation for the wave function is: 

∂tψ =
∂H
∂pψ

=
∂H

∂ iψ †"# $%
= −cβ1σ ⋅∇−u ⋅∇− iw ⋅

σ
2

*
+
,

-
.
/
ψ  (3-125) 

We can also define a Hamiltonian operator with i∂tψ = Hψ  (as in quantum mechanics): 

H = − icβ1σ ⋅∇− iu ⋅∇+w ⋅
σ
2

 (3-126) 

The Hamiltonian is a special case ( 0
0T ) of the energy-momentum tensor: 

Tν
µ =

∂L

∂ ∂µψ"# $%
∂νψ −Lδ ν

µ  (3-127) 

The dynamical momentum density is: 

pi = −Ti
0 = −

∂L

∂ ∂tψ[ ]
∂iψ = − iψ †∂iψ  (3-128) 

This is identical to the momentum density of relativistic quantum mechanics. The dynamical 
angular momentum is similarly: 

L = − ∂L

∂ ∂tψ[ ]
∂ϕψ r, t( ) = − iψ † ∂ri

∂ϕ
∂
∂ri
ψ r, t( ) = − iψ † r×∇[ ]ψ  (3-129) 

For the total momentum and angular momentum, we must add the contribution of the 
motion of the medium: 
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P = p+q = −ψ † i∇ψ + 1
2
∇×ψ † σ

2
ψ

J = L+S = −r×ψ † i∇ψ +ψ † σ
2
ψ

 (3-130) 

Active rotations are described by the operator U(ϕ) [Schiff]: 

∂ϕUϕψ r, t( ) = −r×∇ψ − iσ
2
ψ = − i L + S( )ψ

Uϕψ r, t( ) = exp − i L+S( ) ⋅ ϕ( )ψ r, t( )
 (3-131) 

 
In summary, we have demonstrated that rotational waves in an elastic solid are described 

by a Lagrangian with exactly the same dynamical operators (within a normalization factor) as 
found in relativistic quantum mechanics. 

3.7. Electron Waves 
“… a great step would be made when we should be able to say of 
electricity that which we say of light, in saying that it consists of 
undulations.” 
⎯ Sir George Gabriel Stokes, 1879 

3.7.1. Free Electron Equation 
The bispinor equation for angular momentum density is: 

∂tψ = −cβ1σ ⋅∇ψ −u ⋅∇ψ − iw ⋅
σ
2
ψ  (3-132) 

A formal solution is: 

ψ r, t( ) = exp dt −cβ1σ ⋅∇−u ⋅∇ψ − iw ⋅
σ
2

%

&
'

(

)
*

t0

t

∫
,
-
.

/.

0
1
.

2.
ψ r, t0( )  (3-133) 

3.7.2. Mass, Convection, and Rotation 
Dirac’s derivation of the mass term simply required that each component of the wave 

function satisfy the Klein-Gordon equation. One possible formulation would be: 

[ ]ψµβψβψ ∇×⋅−∇⋅−=∂ 311 ˆi eσσct  (3-134) 

The second-order equation is: 

[ ][ ]ψµψψ 2
3

2222 ˆ ∇×−∇=∂ ect  (3-135) 

which is equivalent to Klein-Gordon if the wave function is an eigenfunction of the operator 
[ ]23ˆ ∇×e . The equivalent classical equation is: 
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[ ] [ ] [ ]
[ ] ψβψµ

ψσβψψσβψεψβψψψ

σe

eσ

1
†

3

1
†

1
†

1
††

ˆ

ˆi

×∇×+

∂−∂+∇−=∂ jikkiijkt cc
 (3-136) 

which can be equivalent to Klein-Gordon if [ ] ψψψβψµ σσe †2
1

†
3ˆ Ω−=×∇× . 

Dirac Equation 
Dirac’s choice of mass term differs from the one above: 

ψβψβψ 31 iΩ−=∇⋅+∂ σct  (3-137) 

where !2cmM e= . Other representations of this equation are: 

 (3-138) 

In quantum mechanics, Planck’s constant !  appears explicitly in the operators and the wave 
function is normalized to one for the purpose of computing correlations. However, physically it 
is more sensible to normalize the wave function to !  so that it is clear that the wave function 
describes the evolution of angular momentum density. One can still compute correlations, of 
course, as we will see later. For consistency with traditional quantum mechanics, we will include 
the factor of !  in our equations. 

The equation for spin angular momentum density is simply: 

[ ] [ ] [ ]ψσβψψσβψεψβψψψ ikkiijkt cc ∂−∂+∇−=∂ 1
†

1
†

1
†† iσ  (3-139) 

which we interpret as an ordinary wave equation (the convection and rotation terms are 
presumed to cancel): 

[ ] [ ] QQQQ 22222 ∇=×∇×∇−⋅∇∇=∂ ccct  (3-140) 
Dirac’s choice of mass term eliminates the mass from the second-order wave equation. One 
consequence of this choice is that the rationale for quantization via soliton waves is lost. So 
while Dirac’s equation can be used in describing particle motion and interactions, it cannot 
explain the existence of discrete particles. 

Dirac also assumed that stationary states have the form: 

ψψ
!
E

t i−=∂  (3-141) 

which has the formal solution: 

( ) ( ) ( )00 ,iexp, tttEt rr ψψ
⎭
⎬
⎫

⎩
⎨
⎧ −−=
!

 (3-142) 

( )
( )notation mechanics quantum icRelativisti

notation original sDirac'i
500 ψψγψγγψγ

βψψψ

µ
µ Ω−=∂≡∇⋅+∂

Ω−=∇⋅+∂

σ

α

c

c

t

t
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This solution is puzzling because the phase variation represented by the energy eigenvalue E 
does not correspond to any actual oscillation in real space. The phase simply cancels out when 
computing observables. A more reasonable starting point would be to neglect gradients in (3-
132) to get: 

 ( ) ( ) ( )00 ,
2

iexp, tttt rσwr ψψ
⎭
⎬
⎫

⎩
⎨
⎧ −⋅−=  (3-143) 

If the wave function is a spin eigenfunction ( ) ψψσ ss =2 , with eigenvalue s, then the exponent 
can be treated as a scalar, as in quantum mechanics. The energy eigenvalue would then represent 
twice the rotational energy ( Sw ⋅=E ), consistent with an equipartition of energy between 
kinetic and potential energy. In this case there would also be no real oscillation. However, we 
can make this result sensible by assuming it to be an approximation. We suppose that the wave 
function is not exactly an eigenfunction of spin, so that there are oscillations in real space. For 
example, the spin direction may rotate at a rate small compared to the magnitude of angular 
velocity. For example, one can envision concentric spherical shells wobbling rigidly so that the 
top and bottom points from the equilibrium position rotate in circles about the z-axis, yielding a 
net average angular momentum. But we assume that the approximation of spin eigenfunctions is 
valid for the purposes of computing eigenvalues and correlations between states.  

Considering the lack of real oscillation in conventional quantum mechanics, it is interesting 
to note that physicists in the nineteenth century, led by William Thomson (Lord Kelvin), 
proposed a model of vacuum as consisting of a fluid filled with vortices. This model is called the 
vortex sponge, and still attracts interest today. The model also has relevance to the behavior of 
liquid helium. This model would eliminate the requirement of oscillation, since steady flows are 
possible in a fluid. The model can also produce shear waves propagating among the vortices. But 
the model is conceptually more complex that the elastic solid, so we will not pursue it here. 
If we neglect gradients in the electron equation, we have: 

ψβψ 3Ω= !E  (3-144) 

which has solutions: [ ]T0001=ψ  and [ ]T0010=ψ  for Ω= !E , and 

[ ]T0100=ψ and [ ]T1000=ψ  for Ω−= !E . For each sign of E, the two solutions 
differ in the sign of the 3x -component of spin. These solutions are referred to as “spin-up” and 
“spin-down” solutions. The positive and negative signs of E are assumed to correspond to matter 
and anti-matter, respectively. We will now examine the relationship between matter and anti-
matter further. 

3.7.3. Angular separation 

Recall Dirac’s equation for a free particle: 

ψβψβψ 31 iΩ−∇⋅−=∂ σct  (3-145) 

The operator ψ∇⋅σ  can be factored: 
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[ ] ψσψσψ ⎥⎦

⎤
⎢⎣

⎡ ⋅
−∂=⎥⎦

⎤
⎢⎣

⎡ ∇×⋅+∂=∇⋅
rr rrrr
Lσrσσ i

 (3-146) 

The two-component angular solutions of the eigenvalue equations ( ) κ+−==Φ⋅ + 1, lmlLσ  and 

( ) [ ] κ−−=+−=Φ⋅ − 12, lmlLσ  are well known (e.g. (Bjorken and Drell 1964)), and are derived in 

Appendix A. These two angular solutions are related by ( ) ( )−+ Φ=Φ mlmlr ,,σ  and yield opposite 

eigenvalues of the parity (spatial inversion) operation. 
These angular solutions may be combined to form two independent wave functions: 

( )
( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Φ

Φ
= −

+
+

ml

ml

F
G

r ,

,i~1
ψ

    or    

( )
( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Φ

Φ
= +

−
−

ml

ml

G
F

r ,

,i~1
ψ

 (3-147) 

3.7.4. Velocity Rotation and Mass 
It is instructive to compute the effect of mass on the wave velocity: 

( ) ( ) ( ) ( )[ ] ( )[ ] ( )

( ) ( ) ( ) ( )

( ) [ ] ( )

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ΦΦΩ=

⎭
⎬
⎫

⎩
⎨
⎧ Φ+ΦΩ=

⎭
⎬
⎫

⎩
⎨
⎧ ΦΦ+ΦΦ

Ω
−=

Ω−+Ω−=⎥⎦
⎤

⎢⎣
⎡

++

++

+−−+

++++++

mlmlir

mlirriml

mlimlmliml

iii

r
FG
r
FG

FG
r
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d

,
†

,2

,
†

,2

,
†

,,
†

,2

1
†

331
†

1
†

4

2

2

ii

δ

σσσσ

σσ

ψσβψβψβσβψψσβψ

 (3-148) 
The mass term represents a radial acceleration of the wave, which is inward provided that the 
appropriate sign is chosen for Ω. This result implies circular propagation, consistent with the 
explanation of the relativistic mass-energy relation given in Chapter 1.  

3.7.5. Wave Interference and Potentials 
Next we investigate the origin of electromagnetic potentials. Certain observables (scalars and 

vectors) should be additive when two waves are superposed. This implies that when two waves 
Aψ  and Bψ  are superposed, the total wave Tψ  has the property that: 

BBAATT GGG ψψψψψψ ††† +=  (3-149) 

for some linear Hermitian operator G. If we simply added the two wave functions, we would 
have instead: 

[ ] [ ] ABBABBAABABA GGGGG ψψψψψψψψψψψψ †††††† +++=++  (3-150) 
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The additional terms are clearly not zero in general. However, they can be forced to zero by 
introducing phase shifts to the wave functions. Using a subscript zero to represent each wave 
function in the absence of interference, let: 

[ ]( )
( ) 0

0

2iexp
2iexp

BAB

ABA

ψδψ

ψπδψ

−=

+−=

 (3-151) 

The relative phase shift π could be distributed between the two waves or incorporated into 
Aδ  and Bδ , but we will treat Aψ  as the ‘test wave’ and Bψ  as the ‘source wave’ and require the 

condition below to hold even with Aδ  and Bδ  equal to zero. Linear addition of the observable G 
requires: 

0†† =+ ABBA GG ψψψψ  (3-152) 
If either wave function is an eigenfunction of some additive observable such as spin 

AAG λψψ =(  or BBG λψψ =  for some scalar λ ), then this result reduces to: 

0†† =+ ABBA ψψψψ  (3-153) 
In terms of the unperturbed wave functions: 

[ ]( ) [ ]( ) 02iexp2iexp 0
†
00

†
0 =−++−+− ABABBBAA ψδδπψψδδπψ  (3-154) 

If we interpret the quantity BAψψ †  as a two-particle state, then interchanging the two particles 
yields: 

[ ] BAABBABA ψψψψψψ ††† −==↔  (3-155) 
This means that the two-particle state is anti-symmetric with respect to exchange of particles. 

This symmetry is called the Pauli Exclusion Principle because it prohibits two identical fermions 
from being in the same state ( BA ψψ =  yields AAAA ψψψψ †† −= ). Thus the Pauli Exclusion 
Principle results from the arbitrary separation of the complete wave function into two 
independent parts.  In quantum mechanics, the two-fermion state is typically constructed as: 

2

††

,
BAAB

BA
ψψψψ

ψ
−

=
 (3-156) 

so that the Exclusion Principle is automatically satisfied. 

The constant phase shift 2π  has no effect on dynamics. However, some observables 
computed from these independent wave functions may differ from those of the free particle 
wave. For example: 

( ) ( )[ ] AAAABBAAA GGG ψψψδδψψψ ʹ′=−= ††
0

†
0 2iexp2iexp

 (3-157) 
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Hence the effect of wave interference is to change the operator for wave packet Aψ  from G to 

AGʹ′ : 

( ) ( )2iexp2iexp BBA GG δδ−=ʹ′  (3-158) 

Applying this rule to the operators t∂ and H yields: 

( ) ( )[ ]{ } ( ) ( ) ABBABtBt H ψδδψδδ 2iexpi2iexp2iexp2iexp −=∂−+∂
 (3-159) 

H
!
= icβ1σ ⋅∇−w ⋅

σ
2

 (3-160) 

Substituting the general form of the Hamiltonian and allowing for convection: 

∂t +
i
2
∂tδB

"

#$
%

&'
(ψB + cβ1σ ⋅∇+

i
2
cβ1σ ⋅∇δB

"

#$
%

&'
(ψB

+ uA ⋅∇+
i
2
uA ⋅∇δB

"

#$
%

&'
(ψB + i wA +wB( ) ⋅ σ

2
(ψB = 0

 (3-161) 

Substituting the mass term for the free electron: 

∂t +
i
2
∂tδB

"

#$
%

&'
ψA + cβ1σ ⋅∇+

i
2
cβ1σ ⋅∇δB

"

#$
%

&'
ψA

+ uB ⋅∇+
i
2
uA ⋅∇δB

"

#$
%

&'
ψA +

i
2
σ ⋅wB[ ]ψA + iΩβ3ψA = 0

 (3-162) 

Since we are interested in the effects of the phase shift, we will neglect the extra terms which are 
independent of Bδ  (without explicit justification). We then define the electromagnetic potentials 
as: 

Au

A

c
ee

ce

Bt

B

!!

!

⋅−∂≡Φ

∇−≡

δ

δ

2
1
2

 (3-163) 
Although the vector potential A is a gradient, its curl (the magnetic field) may be nonzero 

because Bδ   is a phase angle which may be multi-valued. For example, the multi-valued 
function ( )12arctan xxB =δ   has gradient components: 

[ ]( )

[ ]( )212
2

2
1

1
2

212
2

2
1

2
1

xx

x
xx

x

B

B

+
=∂

+
−=∂

δ

δ

 (3-164) 

The curl of this gradient is non-zero at (x1,x2)=(0,0). See Kleinert [2007] for a discussion of 
multi-valued potentials in electromagnetism.  
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With these definitions, the electron equation in the presence of another wave becomes: 

0iii 311 =Ω+⎥⎦

⎤
⎢⎣

⎡ ⋅−∇⋅+⎥⎦

⎤
⎢⎣

⎡ Φ+∂ AAAt
ece

ψβψββψ Aσσ
!!  (3-165) 

Hence electromagnetic potentials result from wave interference under the assumption that 
different wave packets are independent. The above analysis is not very precise, however, as we 
neglected changes in medium velocity and vorticity, and did not specify which observables 
should be additive (total momentum density and total angular momentum density should both 
have this property). A complete analysis of particle interactions would require knowledge of the 
soliton wave functions of each particle. 

Setting ψψ HAt i=∂! , the modified Hamiltonian is: 

311i βββ Ω−⋅+∇⋅+Φ−= Aσσ
c
ecceH

 (3-166) 
Multiple source waves may be treated sequentially, at least as a first approximation. For a 

given test wave, make it independent of the first source wave as above. Then take the modified 
test wave and make it independent of the second source wave. Repetition of this process for all 
source waves results in the addition of phase shifts or equivalently, the addition of potentials. 
Matter and anti-matter solutions are assumed to yield opposite signs of phase shift. One may also 
infer that soliton waves with identical long-range (electromagnetic) potentials (e.g. positrons and 
protons) also have identical bispinor wave functions at large distances from their centers. 

In quantum mechanics, it is necessary to treat various wave packets as independent 
‘particles’.  However,  with a classical wave theory of matter it may be simpler to solve the 
single equation for the total angular momentum density, then decompose the solution into soliton 
‘particles’ for comparison with experiment. 

3.7.6. Lorentz Force 
In terms of electromagnetic potentials, the modified Hamiltonian is: 

31111 i
2

ii βββββ Ω+⋅−∇⋅−Φ=⋅+∇⋅−⋅−∇⋅−Φ= AσσσwuAσσ qcqqcqH
!

 (3-167) 

Recalling the u-dependence of qΦ and w (and our change of sign of H), the conjugate 
momentum for r is now: 

[ ] [ ]
qApuA

uu
pr +−=+

⎭
⎬
⎫

⎩
⎨
⎧ +∇−===

c
q

c
qL

0
† iH

ρψψ
δ
δ

δ
δ

 (3-168) 

where { }ψψ ∇−= i†
0p  is the free particle wave momentum. 

 The time derivative of any observable Q is: 

[ ] [ ] [ ] [ ] ψψψψψψψψψψψψ QQHQQQQ ttttt ∂+=∂+∂+∂=∂ †††††† ,i  (3-169) 

An example of this is the force density. Substituting the linear wave momentum for Q yields the 
Lorentz force law: 
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ψβψψβψ

ψββψ

⎭
⎬
⎫

⎩
⎨
⎧ +×=

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−Φ∇−⎥⎦

⎤
⎢⎣

⎡ ×∇×=

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−⎥⎦

⎤
⎢⎣

⎡∇⋅−Φ∇−⎥⎦

⎤
⎢⎣

⎡ ⋅∇=∂

EBσAAσ

AAσAσp

q
c
qc

tc
qq

c
qc

tc
q

c
qcq

c
qct

1
†

1
†

11
†

 (3-170) 
where E and B are the usual electric and magnetic fields, respectively. Hence the Lorentz force 
has a straightforward interpretation in terms of classical wave interference.  

3.7.7. Magnetic Moment 
The equation of evolution in electromagnetic fields is: 

[ ] ψβψββ 311 iii Ω−=⋅+∇⋅+Φ+∂ Aσσ qcqt  (3-171) 

Using two-component spinors with [ ]T21,ψψψ = , this equation can be separated into two 
coupled equations: 

[ ] [ ]
[ ] [ ] 212

121
iii
iii
ψψψ

ψψψ

Ω=⋅−∇⋅+Φ+∂

Ω−=⋅−∇⋅+Φ+∂

Aσσ
Aσσ

qcq
qcq

t

t  (3-172) 

Let ( ) 11 exp χψ tiΩ−≡  and ( ) 22 exp χψ tiΩ−= . Substitution yields: 

[ ] [ ]
[ ] [ ] 0ii2i

0ii

12

21
=⋅−∇⋅+−Φ+∂

=⋅−∇⋅+Φ+∂

χχ

χχ

Aσσ
Aσσ
qcMq

qcq

t

t  (3-173) 

Next, assume that [ ] 22 i2i χχ Ω<<Φ+∂ qt . This yields: 

[ ] [ ][ ] 0
i2

iii 11 =
Ω

⋅−∇⋅⋅−∇⋅
+Φ+∂ χχ

AσσAσσ qcqcqt  (3-174) 

This is the Pauli equation, which was the first equation to incorporate electron spin. 
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Using the commutation relations for the Pauli spin matrices: 

[ ] [ ] [ ] [ ]
[ ] [ ][ ]{ }
[ ]{ } 12
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 (3-176) 

Substitution yields: 
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1 2
i

i χχ
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t

Bσ
!!  (3-177) 

This equation is of course simply an approximate equation for two components of the Dirac 
wave function. Nonetheless, it is of historical importance because it was used by Pauli to include 
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effects of electron spin. Without the spin term, the resultant scalar equation is the one 
Schrödinger first used to compute the hydrogen energy levels: 

[ ] ( ) ψψψ
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⎪
⎬
⎫
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=∂ q
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qAc ii
t 2

22

22
i

i !!!  (3-178) 

Schrödinger’s equation is currently the conventional starting point in the study of quantum 
mechanics. Although simpler than the Dirac equation, it is far less intuitive.  Both Lorentz 
invariance and the connection with spin angular momentum have been lost. 

In a weak, uniform magnetic field with 20 rBA ×= , we can neglect 2A  to obtain: 
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The final form with the spin angular momentum operator ( 2σs = ) is obtained by 
comparison with the angular momentum operator (3-Error! Bookmark not defined.). This 
result is significant because it shows that, in this approximation, the coefficient of spin angular 
momentum is twice the coefficient of orbital angular momentum in the electron magnetic 
moment: 

[ ]SLµ 2
2

+
Ω

−=
cq

 (3-180) 

A free electron with eq −= , 0=L , and 21=S , has magnetic moment equal (within 0.1%) to 

the Bohr magneton eV/T1078.52 5−×=mce! . 

3.7.8. Spin Waves 
Consider the equation for the evolution of spin (3-109): 

022 =×−∇⋅+∇−∂ SwSuQS ct  (3-181) 
If we neglect the spatial gradients, we have: 

SwS ×=∂t  (3-182) 

The vorticity is given by: 

( ) ⎥⎦

⎤
⎢⎣

⎡ ×∇+∇−×∇=×∇= Suw
2
1iRe

2
1

2
1 † ψψ

ρ  (3-183) 
Keeping only the term involving spin yields: 

[ ] SSSSS ×∇−=××∇×∇=∂ 2
4
1

4
1

ρρt
 (3-184) 
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This equation describes the simplest form of a ‘spin wave’, which is commonly observed in 
ferromagnetic materials. 

3.7.9. Measurement Correlations 
In 1935 Einstein, Podolsky, and Rosen suggested a thought experiment intended to 

demonstrate that quantum mechanics was not a complete theory. The idea was that particles 
generated in pairs could be subjected to independent measurements that are not quantum 
mechanically allowed on single particles (due e.g. to the uncertainty principle). However, when 
actual experiments were performed they supported the quantum mechanical view that physical 
quantities do not have specific values until they are measured. 

It is widely believed that the correlations between polarization measurements of entangled 
particles cannot be predicted classically. This belief is based on correlation predictions using an 
equation of the form: 

( ) ( ) ( ) ( ) nnnn ddBAP λλλλρλλλλ∫= ...,...,,...,,,...,,, 1111 baba  (3-185) 

where iλ  represent variables which describe the state of the system, ( )nλλρ ,...,1  is the 
probability distribution of these variables, a and b are the measured polarization directions for 
the two entangled particles, A and B are the theoretical outcomes of the measurement (±1), and 
P(a,b) is the correlation.  

John Bell [1964] proved that quantum correlations cannot be represented in this form. In 
particular, he proved that for three different measurements ( )nA λλ ,...,, 1a , ( )nB λλ ,...,, 1b , and 
( )nC λλ ,...,, 1c : 

( ) ( ) ( )cabacb ,,,1 PPP −≥+  (3-186) 

This condition is violated by quantum mechanical (and physically observed) correlations, which 
can be measured using two or more particles whose spins are constrained. For example, if a pair 
of spin ½ particles is produced with opposite spin, the correlation between their spin 
measurements by detectors oriented with relative angle ϕ  is: 

ϕϕ cos)(pair −=P  (3-187) 

This correlation violates Bell’s condition. For example, if the detectors a, b, and c are 
oriented at angles 0, 4π , and 43π , respectively, then:  

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )cabacb
ca

cb
ba

,,,1
2143,

02,
214,

PPP
PP

PP
PP

−<+

==

==

−==

π

π

π

 (3-188) 

The fact that actual measurements violate Bell’s condition implies that some aspect of his 
derivation does not conform to reality. One explicit assumption is that there is no 
communication, instantaneous or otherwise, between the two detectors. Many have interpreted 
violation of Bell’s inequalilty as evidence of instantaneous communication between the detectors 
(nonlocality), but there is no direct evidence that information can be transmitted instantaneously.  
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We will leave this issue unresolved, but point out that the integral (3-185) is questionable. 
For example, if some parameters are complex numbers then the integral is contour-dependent 
and may be ill-defined. Furthermore, the wave model of matter is also nonlocal insofar as each 
“particle” is actually a spatially extended wave packet. 

An alternative formulation utilizes conditional probabilities. Let jiBA  represent the four 

possible measurement outcomes at detectors A and B: . and,,, +−−+−−++ BABABABA Defining 
( )xPr  as the probability of x, the correlation may be written as: 

( ) ( ) ( ) ( ) ( )ij
ji

jiij
ji

iji
ji

jiji ABBAABABABABAP |Pr
2
1|PrPrPr,
,,,
∑=∑=∑ ∩=ba  (3-189)	  

 
We will use this form and assume that the conditional probability ( ) ( )jiij BAAB |Pr|Pr =   

is proportional to the squared correlation between spinor eigenfunctions separated by the rotation 
angle between the measured states. 

To compute the correlation between two bispinor wave functions, consider the following 
properties: First, the magnitude of the wave function must be second-order in each of the 
components and positive-definite. Therefore: 

ψψψ †=
 (3-190) 

Second, physical variables are bilinear in the wave function. Therefore it is the squared 
magnitude that is of physical interest. The un-normalized correlation 0P  between two functions 

must be defined in such a way that the squared norm 
2†ψψ  is the self-correlation: 

( )
2†

0 , BABAP ψψψψ =  (3-191) 

Dividing by the magnitudes of each wave function yields the normalized correlation C: 

( ) ( )

BBAA

BA

BBAA

BA
BA

P
P

ψψψψ

ψψ

ψψψψ

ψψ
ψψ

††

2†

††
0 ,

, ==  (3-192) 

The correlation between states related by rotation ( )φR  about an axis perpendicular to the spin 
is: 

( )

2
cos22†

2†
ϕ

ψψ

ψψ
==

φR
P  (3-193) 

The correlation for angle ( )φφ−ˆπ  is ( )[ ] [ ]2sin2cos 22 ϕϕπ =− .   
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Assuming that spin measurements are coincident or anti-coincident in proportion to the 
correlations between the spinor wave functions, the correlation sP  between spin measurements 
separated by angle φ  is: 

ϕ
ϕϕ

ϕπϕϕ ψψ cos
2

sin
2

cos)()()( 22 =−=−−= PPPs  (3-194) 

In the case of pair production in EPR-type experiments, the spins of the two particles are 
opposite (changing ϕ   to ϕπ −  above), thereby changing the sign of the correlation. Hence we 
are able to derive the quantum correlations from some simple assumptions, though this is by no 
means a definitive resolution of the EPR paradox. 

3.7.10. Quantum Mechanics 
In the preceding section we computed the correlation between two states related by rotation. 

The two states may be denoted by ( )t,rψ  and ( ) ( )tR ,rψϕ . The correlation at a given position 
and time is given by (3-193). A more global correlation between two wave functions ( )t,1 rψ  and 

( )t,2 rψ  at a given time is obtained by integrating over space: 
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 (3-195) 

The correlation between spin one-half states is non-negative, and the correlation of a wave 
function with itself is unity. These properties provide the basis for a probabilistic interpretation 
of the wave functions. A given wave function may be decomposed into multiple wave functions 
(states), and the correlation between the wave function and each ‘state’ may be computed. In 
quantum mechanics, this correlation is interpreted as the probability of detecting that state with a 
measurement.  

This means that correlations between physical states (as opposed to measurements) are equal 
to the square of a complex amplitude. This fundamental property of quantum mechanics has 
mystified generations of physicists. Yet we can now see clearly that this property of matter is due 
to the simple fact that independent wave states are 180 degrees apart. 
 

Temporal evolution of the wave function is expressed as: 
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 (3-196) 

Therefore the correlation between an initial state ( )11 ,trψ  and a final state and ( )22 ,trψ  is: 
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In quantum mechanics, the states are normalized to one: 

213†
∫

=ʹ′
rdψψ

ψ
ψ

 (3-198) 

Dropping the primes, the correlation integrals are then written in the form: 
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,iexp| ψψψψψψ
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⎟
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⎞

⎜
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⎛
∫−=≡
t

t
dttHttP r  (3-199) 

In quantum mechanics, this correlation represents the probability density for the initial state 1ψ  
to evolve into the final state 2ψ .  

 Any physical process can be analyzed statistically in terms of complex amplitudes such 
as described above. If different possible final states are distinguishable, then the joint probability 
is obtained simply be adding each of the separate probabilities. However, if different possible 
final states are indistinguishable (e.g. one electron or a different electron reaching a detector), 
then the joint probability is computed by adding the amplitudes and only then computing the 
magnitude. In the wave model, this rule is explained by the fact that indistinguishable particles 
(e.g. two electrons) are wave packets with the same frequency characteristics. Non-identical 
particles, which have different frequency characteristics, have variable phase between the two 
waves and therefore any interference between the two waves would average to zero.    

3.7.11. Fermions and Bosons 
Particles whose correlations are computed according to the above rules are called “fermions” 

in honor of the physicist Enrico Fermi.  Fermions are considered to be the “fundamental 
particles” of nature. These include electrons, protons, neutrons, neutrinos, and quarks. Recall that 
the Pauli exclusion principle was derived from the assumption that the particle wave functions 
were eigenfunctions of an observable (e.g. spin). If this is not the case, then there is no exclusion 
principle. 

Particles which can be superposed are called “bosons” in honor of physicist Satyendranath 
Bose. Examples include photons and π mesons. Multiple bosons may coexist with each in 
exactly the same state (and same position). In quantum mechanics the boson two-particle wave 
function satisfies: 

0†† =− ABBA ψψψψ  (3-200) 

This condition is always satisfied if BA ψψ = , so there is no exclusion principle for bosons. 

To see how spin is related to statistics, consider a massless photon which in the plane wave 
approximation satisfies the equation: 

( )( )QkkQQ ∇⋅+∂∇⋅−∂=∇−∂ ˆˆ222 ccc ttt  (3-201) 
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Either ( ) 0ˆ =∇⋅+∂ Qkct  or ( ) 0ˆ =∇⋅−∂ Qkct . In either case the vector Q obeys a convection 
equation and is therefore the quantity used to compute correlations. Q is a vector, which 
transforms under rotation with spin one. Multiple photons can be superposed simply by adding 
their Q values without the interference associated with spinors. 

For another example, suppose fermions A and B are somehow bound together with a joint 
wave function BA,ψ  which satisfies the exclusion principle: 

2

††

,
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BA
ψψψψ

ψ
−

=
 (3-202) 

If we use  BA,ψ  to compute correlations with an identical particle composed of fermions A′ and 
B′, we have: 
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 (3-203) 
Hence composite particles formed from two fermions behave statistically like bosons. 

In the Standard Model of Physics, the viewpoint is that fundamental particles are fermions 
which interact through fields, and particles associated with the fields are bosons. We have seen 
how this interpretation can arise from an underlying classical wave process. 

3.7.12. Prior Knowledge and Statistics 
Interpretation of quantum statistics can be confusing. Consider the case of Schrodinger’s cat. 

The cat is placed in a box which contains a radioactive element, a radiation detector, and a 
poisonous gas. If the detector is triggered by a radioactive decay then it will in turn trigger the 
release of the poison and thereby kill the cat. According to quantum statistics, at any given time 
there is not merely a chance that the cat will be dead or alive, but the mathematical description 
involves a complex amplitude for each possibility. Just as electron statistics were described 
above by a complex superposition of ‘spin up’ and ‘spin down’ states, the cat’s fate is described 
by a complex superposition of ‘alive’ and ‘dead’ states. Physicists are therefore tempted to say 
that the cat is in a superposition of living and dead states, which is rather absurd. 

There are different ways to resolve this paradox, but the simplest resolution is to say that the 
cat really is either dead or alive, and not both. The complex amplitude merely indicates our 
knowledge (or lack of knowledge) of the situation. Physicists have generally rejected this logic 
because they never realized that classical statistics (e.g. the probability that the cat is dead) 
should be computed in exactly the same manner as the quantum statistics. The Copenhagen 
interpretation of quantum mechanics posits that the statistical interpretation of the complex wave 
function is also the physical interpretation (i.e. there are no deterministic physical variables 
because if there were then their correlations would be computed differently). However, we can 
obtain the same correlations without the bizarre interpretation that the cat is partly alive and 
partly dead until we open the box. 
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3.7.13. Hydrogen Atom 

The proton produces a Coulomb potential ( rZee 2−=Φ ). Neglecting the vector potential in the 
electromagnetic electron equation (3-165) yields: 

ψβψβ 31 ii Ω−=⎥⎦

⎤
⎢⎣

⎡ ∇⋅+Φ+∂ σce
t !  (3-204) 

Assume as before a temporal eigenvalue ψψ Et i−=∂ , and assume that the angular 

eigenfunction ( )+Φ ml,  has even parity and ( )−Φ ml,  odd parity. A wave function of the form ( )+ψ  

yields the coupled radial equations: 
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 (3-205) 
Solutions to these coupled equations are obtained as follows (e.g. Schiff 1968): 

For large r the asymptotic equations are: 
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 (3-206) 

which combine to yield: 

[ ] 02222 =∂+Ω− FcFE r  (3-207) 

We are seeking a bound state with 22 Ω<E . Therefore the asymptotic behavior 

is ( )rF α−∝ exp  with [ ] 22 cE−Ω≡α . 

Now let: 
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 (3-208) 

The coupled equations become: 
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 (3-209) 

Assume that f and g can be written as power series: 
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Let cZe !2≡γ and match powers of r: 
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 (3-211) 

We can eliminate the ( )1−ν  terms to get a relationship between νf  and νg . 

[ ] [ ]{ } [ ] [ ]{ } νν κναγαγκν fsccEgcscE ++−Ω−=+−+Ω− 22
 (3-212) 

which for large n becomes [ ] νν αfcgE −=Ω− . 

For n=0: 

[ ]
[ ] 0

0

00

00
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=++
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κγ

κγ

 (3-213) 

The determinant for these coupled equations must be zero. This condition yields a solution for s: 

22 γκ −±=s  (3-214) 

Recall that the actual wave function contains an additional factor of 1/r. Therefore we choose the 
positive sign here so that the solution is regular (or only slightly divergent if |s|<1) at the origin. 

 
Using the relation between coefficients derived above, the asymptotic behavior for large ν   is: 
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The ratio between successive terms matches the Taylor series expansion for exp(2ar): 

( ) [ ]∑=
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12exp
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να
ν

α rr
 (3-216) 

If the series proceeds to infinite n then the wave function would be infinite at large values of r. 
To make the wave function finite, the series must terminate at some finite value of ν . Calling 
this value n', Eq. (3-211) yields the relation between the highest coefficients: 

[ ] nn fEgc ʹ′ʹ′ Ω+−=α  (3-217) 

Combining this relation with eq. (3-212) yields an expression for the characteristic frequencies: 

[ ] [ ][ ] 212222 EnscnscE −Ωʹ′+=ʹ′+= αγ  (3-218) 
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Solving for E! : 

[ ]{ } 21221
−

ʹ′++Ω= nsE γ!!  (3-219) 

These are the discrete energy levels of an electron in a Coulomb potential. The factor of ! , 
which relates energy and frequency, is assumed to be the integral of the squared wave function. 
Denote the energy by E!≡ε  and mass by Ω≡ !2cme . These energy levels were actually 
derived by Sommerfeld [1916a] using the model of a relativistic particle propagating in elliptical 
orbits. 

There are two main sources of discrepancy from the actual hydrogen energy levels. First, 
we assumed a static potential, implying that the nucleus is unaffected by the presence of the 
electron wave. By analogy with particles we can improve the calculations by replacing the 

electron rest energy 2cme=Ω!  with the “reduced mass” energy [ ]pepe mmmmc +=Ωʹ′ 2! , 

where pm  is the proton mass. Second, we have neglected any effects of the magnetic vector 
potential. 

The energy levels are typically classified using a positive integer principal quantum 
number n and positive half-integer angular quantum number 21−≡κJ : 

nJn ʹ′++=
2
1

 (3-220) 
In terms of these quantum numbers the energy levels are: 
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 (3-221) 

Table 3-II compares measured energy levels (relative to the ground state) with energy levels 
calculated using this formula. The configuration label (nL) includes the principal quantum 
number n followed by a letter code for the orbital angular momentum L: s=0, p=1, d=2, f=3, etc. 
Note that the formula above does not distinguish between different L values for the same n and J. 
While the agreement with experiment is good, it must be noted that the assumed Coulomb 
potential is simply empirical (as it is also in conventional quantum theory). For a complete 
theory the potentials of the nucleus should be derived from its free particle wave function. 

 
Configuration J Measured Level (eV) Level Computed from (3-221) 

     
1s 1/2 0 0 
2s 1/2 10.1988101 10.1988390 
2p 1/2 10.1988057 10.1988390 
2p 3/2 10.1988511 10.1988843 
3s 1/2 12.0874944 12.0875263 
3p 1/2 12.0874931 12.0875263 
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3p 3/2 12.0875066 12.0875397 
3d 3/2 12.0875065 12.0875397 
3d 5/2 12.0875110 12.0875442 
4s 1/2 12.7485324 12.7485650 
4p 1/2 12.7485319 12.7485650 
4p 3/2 12.7485375 12.7485707 
4d 3/2 12.7485375 12.7485707 
4d 5/2 12.7485394 12.7485726 
4f 5/2 12.7485394 12.7485726 
4f 7/2 12.7485404 12.7485735 
∞→n   13.5984340 13.5984671 

 
Table 3-II  Measured and computed hydrogen energy levels. 

Ralchenko, Yu., Jou, F.-C., Kelleher, D.E., Kramida, A.E., Musgrove, A., Reader, J., Wiese, 
W.L., and Olsen, K. (2007). NIST Atomic Spectra Database (version 3.1.2), [Online]. Available: 
http://physics.nist.gov/asd3 [2007, May 8]. National Institute of Standards and Technology, 
Gaithersburg, MD. 
 
   

3.8. Symmetries 
“I cannot believe that God is a weak left-hander…” 
⎯ Wolfgang Pauli 

3.8.1. Spatial inversion 
Spatial inversion (conventionally called the parity operation, P, though we will use the letter 

M for mirroring) is the process of inverting the three spatial axes. This operation corresponds to a 
mirror image followed by a 180 degree rotation about the axis perpendicular to the mirror. Since 
rotation does not affect any physical laws, we will sometimes substitute the term “mirror image” 
for “spatial inversion” when referring to general physical consequences. Parity conservation is 
generally taken to mean that when spatial inversion is applied to any physical process, the 
resulting process is equally frequent in nature. Parity violation means that a process and its 
mirror image are not equally likely, and maximal parity violation means that spatial inversion of 
a physical process yields a process with no physical interpretation. 

In this chapter, we are not interested in the relative frequency of occurrence of events and 
their mirror images.  We are only concerned with the question of maximal parity violation: “Is 
the mirror image process possible in nature or not?”  We will refer to maximal parity violation as 
“mirror asymmetry”, and existence of a mirror image process as “mirror symmetry.” 
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Figure 3.10  Beta decay of   Co60   (left) has a mirror image which is consistent with beta decay of its 

antimatter counterpart Co60  (right).  The variable S represents the nuclear spin. 
 
 
When viewed in a mirror, all known physical processes appear to proceed as if matter and 

anti-matter were exchanged. An example is the beta decay of  Cobalt60 shown in 

 
Figure 3.10.  The simplest explanation for this observation is that spatial inversion exchanges 

matter and anti-matter. The mathematical basis for this explanation was derived by Close 
[2011b] as follows.  

Let us consider how the wave function changes under spatial inversion. 

Conventional parity operator 
Dirac’s original equation for a free particle has the form: 

ψβψσβψ 31 iΩ−=∂+∂ iit c  (3-222) 

where !2mc≡Ω . The β -matrices may be taken as: 



 

 
120 

                                            (3-223) 

Where i~ is the pseudoscalar imaginary, as will be seen below. 

The spin matrices σ i utilize a true scalar imaginary ( i ): 

  (3-224) 

Multiplying the Dirac equation by †ψ  and adding the Hermitian conjugate equation yields a 
continuity equation: 

[ ] [ ] 01
†† =⋅∇+∂ ψβψψψ σt  (3-225) 

This relationship is sufficient to establish the probability density ( ψψ † ) and current ( ψβψ σ1
† ) 

as the components of a Lorentz four-vector. 
Although the above analysis is satisfactory, it is currently fashionable to use the notation: 

i
i σγγγβγβγ 50

1
5

3
0 ;; ≡≡≡  (3-226) 

and multiply each term in the original Dirac equation (3-222) by 0γ  to obtain: 

ψψγψγψγ µ
µ Ω−=∂≡∂+∂ i0

i
i

t c  (3-227) 

This procedure cannot have any effect on the transformation properties of the Dirac matrices. 

The conventional parity operator P is assumed to have the form: ( ) ( )rr −= ψψ UP . It is 
derived from the requirement that the Dirac equation in the form (3-227) be invariant with 
respect to the transformation: 

( ) ( ) ( ) 0i0 =−Ω+−∂+−∂ rrr ψψγψγ UUcU i
i

t  (3-228) 

Inverting the parity operator yields: 

( ) ( ) ( ) 0i 1101 =Ω+∂−∂ −−− rrr ψψγψγ UUUcUUU i
i

t  (3-229) 

Equivalence with the original Dirac equation requires: 
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 (3-230) 

These conditions are satisfied by U=γ 0. Within an arbitrary phase factor the conventional parity 
operator is therefore: 

( ) ( ) ( )rrr −=−= ψβψγψ 3
0P  (3-231) 

There are two problems with this derivation. First, the form ( ) ( )rr −= ψψ UP  is not the most 
general possible operator. For example, the conventional charge conjugation operator includes 
complex conjugation. Second, the matrix 3

0 βγ =  is not inverted because it is presumed to 
represent a temporal component of a four-vector. This illusion is maintained by rewriting the 
probability density and current components as ψγψ 0  and ψγψ i , respectively, with 0†γψψ ≡ . 
This change of notation does not change the fact, however, that the probability density is 
independent of 0γ . The matrix associated with the temporal part of the probability current 4-

vector is the identity matrix, not 0γ .  This is an important flaw in the conventional derivation of 
the parity operator.   

Since the 4-vector ( ψψ † , ψγψ σ5† ) is indeed Lorentz-invariant, there is absolutely no basis 

for the claim that 0γ  is a temporal component. On the contrary, we will show that 0γ  is 
geometrically related to wave velocity and may quite reasonably be inverted by spatial inversion. 
We will see that the resulting spatial inversion operator inverts all of the terms in the modified 
Dirac equation (3-227). 

 

New spatial inversion operator 
In discussing spatial inversion, it will be necessary to define two different unit imaginary 

numbers. As defined above, the product of spin matrices is a true scalar with respect to spatial 
inversion: 

321i σσσ≡  (3-232) 

The σ-matrices are not involved in spatial inversion, which inverts the wave velocity but not the 
spin. However, we can identify three matrices associated with polar vectors which have the same 
algebra as the σ-matrices. 

The β  matrices define directions relative to the velocity vector σσ 5
1 γβ cc = , where 

the brackets indicate expectation value.  One can also define absolute vectors 
( )σσσ 321 ,, βββ  .  If the wave function is an eigenfunction of velocity aligned with a spatial 

axis xv so that ψψσβ cc v =1 , then (using 12 =vσ ): 
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[ ] [ ]
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121
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†
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=−==

ψσβψψσβσβσβψψσβψ

ψσβψψσβσβσβψψσβψ

vvvvv

vvvvv

ccc

ccc

 (3-233) 

These results follow from the fact that 1β  is a reflection operator for both 2β  and 3β , and the 
only number equal to its negative is zero. Therefore σ2β  and σ3β  are indeed perpendicular 

to velocity σ1β  for velocity eigenfunctions. For example, in our notation the wave function 

( )T1001
1
=ψ  is a simultaneous eigenfunction of 11σβ , 22σβ , and 33σβ . Therefore the 

three vectors σ1β , σ2β , and σ3β  are mutually orthogonal vectors (left-handed) in three 

dimensional space, at least for velocity eigenfunctions. The vector σ1β  is parallel to 1x̂ . 

Rotation of the vector σ1β  by −90 degrees about the relative vector 2β  yields σ3β , which is 
parallel to 3x̂ . This is of course the same as rotation of 1x̂  by −90 degrees about 2x̂ , which is 
associated with the matrix 2σ . It is therefore clear that for velocity eigenfunctions, the relative 
vectors represented by ( 321 ,, βββ ) are geometrically equivalent to the absolute vectors 
represented by ( 321 ,, σσσ ). We assume that all three vectors σ1β , σ2β , and σ3β  are polar 
vectors so that the vector space ( 321 ,, βββ ) does not have mixed parity. 

The matrix factor 3
0 βγ =  in the conventional parity operator represents a rotation by 180 

degrees about the 3β  axis ( 3x̂   in our example). This operation inverts only two of the three 
orthogonal vectors associated with velocity.  

Compare this situation with classical transverse waves in a solid. We could define an 
operator (analogous to the Dirac P operator) which reflects the equilibrium position of each point 
in the solid, and also reflects the wave velocity direction. We also invert local displacements and 
velocities along one of the two axes perpendicular to the wave velocity. The resulting “reflected” 
wave would propagate along just as one would expect for the spatially inverted wave. But of 
course the operator we defined is not the spatial inversion operator, because we failed to invert 
one of the axes of the local displacement and velocity of the solid medium (in total we inverted 
two of the three local axes, corresponding to a °180  rotation about the third axis). Similarly, the 
Dirac P operator inverts the “wave” (or “particle”) velocity direction, but inverts only one of two 
other quantities which are geometrically related to the “wave” velocity (a °180  rotation in the 
velocity-representation space). We will derive a new spatial inversion operator which inverts all 
three vectors σ1β , σ2β , and σ3β  associated with velocity. 
The spin matrices σi are components of a pseudovector and should not be inverted. Therefore the 
spatial inversion must be accomplished by inverting the three relative matrices ( 321 ,, βββ ). This 

requires that the associated imaginary i~  be a pseudoscalar, as assumed above. The unit 
imaginary associated with mass is assumed to be a pseudoscalar since it is multiplied by ( 3β ) in 
the original Dirac equation. 

The roles of the different imaginaries can be clarified by factoring the Dirac wave function in 
a manner similar to that of Hestenes [1967]: 
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( ) ( ) ( ) ( ) 011
21 i~expexpiexp ψζβασβϕσψ iiiia≡r  (3-234) 

It is clear that 2i kjijki σσεσ =  is associated with rotation in the plane orthogonal to the xi 

axis. Similarly, 321i
~

βββ =  is associated with rotation in the velocity-representation space.  

Next we define a new wave function in which all imaginary pseudoscalar factors are 
inverted: ( ) ( )i~i~# −≡ψψ . This pseudoscalar conjugation operation differs from complex 
conjugation, which inverts both scalar and pseudoscalar imaginaries. Pseudoscalar conjugation 
inverts 2β  since: 

[ ] [ ][ ] [ ]ψβψψβψψβψψβψ 2
†#

2
†##

2
†#

2
†# −=−==  (3-235) 

The spatial inversion (or mirroring operator M) which inverts all of the relative velocity vectors, 
is then (within an arbitrary phase factor): 

( ) ( ) ( )rrr −=≡ #
2ψβψψ MM  (3-236) 

This operator inverts observables computed from 1β , 2β , and 3β  independently of the change in 
sign of r.  

The Dirac equation for a particle in electromagnetic potentials is: 

[ ] 0iii~ 131 =−Φ+Ω+∂+∂ ψσββσβ i
i

i
i

t eec A  (3-237) 

When applied to this equation, the parity operator inverts 3β , 1β , i~ , and i∂  (the matrices are 
inverted because they anti-commute with 2β ). Denoting spatially inverted quantities with 
subscript M, the spatially inverted Dirac equation is: 

( )[ ] 0iii~ 1
##

31 =+Φ+Ω+∂+∂ MMiM
i

MMMi
i

t eec ψσββσβ A  (3-238) 

We assume Ω=ΩM . The transformed equation has the same form as the original Dirac 
equation except for the sign of the vector potential term. This sign change is necessary for 
consistency with gauge transformations. The gauge transformation 

( )χψ

χ

χ

iexp −=ʹ′

∇−=ʹ′

∂+Φ=Φʹ′

ii

t

eAAe
ee

 (3-239) 
suggests that the scalar potential may be regarded as a time derivative and the vector potential 
may be regarded as a spatial derivative. Taking gt∂≡Φ  and g∇+×∇≡ GA  would leave the 
form of the equation invariant: 

( )[ ] 0iii~ 1
##

31 =∇+×∇⋅−∂+Ω+∂+∂ MMMMMtMMi
i

t gegec ψββσβ Gσ  (3-240) 
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The scalar and vector potentials must have opposite spatial inversion eigenvalues. We will 
assume that: 

( )[ ] ( )
( )[ ] ( )rAArA

rr

−==

−Φ−=Φ=Φ

eeeM

eeeM

MM

MM

iii

iii
#

#

 (3-241) 
The transformed Dirac equation is then: 

( ) ( )[ ] 0iii~ 131 =−−−Φ−Ω+∂+∂ MiiMMMi
i

t Aeec ψσββσβ rr  
With these transformation properties, we will show that the new parity operator is consistent 

with an exchange of matter and anti-matter. 

Eigenfunctions and eigenvalues 
Next we consider the effect of the new parity operator on the eigenvalue equation. For 

simplicity we assume the vector potential A to be zero. Assuming temporal dependence 
( )Etiexp − , the eigenvalue equation is: 

[ ] ψβψβ 31 i~ii Ω−=∇⋅+Φ+− σceE
 (3-242) 

The operator ψ∇⋅σ  can be factored: 

[ ] ψσψσψ ⎥⎦

⎤
⎢⎣

⎡ ⋅
−∂=⎥⎦

⎤
⎢⎣

⎡ ∇×⋅+∂=∇⋅
rr rrrr
Lσrσσ i

 (3-243) 

The two-component angular solutions of the eigenvalue equations ( ) κ+−==Φ⋅ + 1, lmlLσ  and 

( ) [ ] κ−−=+−=Φ⋅ − 12, lmlLσ  are well known [Bjorken and Drell 1964]. These two angular 

solutions are related by ( ) ( )−+ Φ=Φ mlmlr ,,σ  and yield opposite eigenvalues under coordinate 

inversion ( rr→ ). Only the true scalar imaginary i  can appear within these functions. 
Denote two wave functions as: 
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 (3-244) 
Each of these is an eigenfunction of the conventional parity operator, but they are exchanged by 
the new spatial inversion operator: 

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )rrr

rrr

++−−

−++

−=−=

−=−=

ψψγψ

ψψγψ

1#4

#4

l

l

M

M

 (3-245) 

Using ( )+ψ  in the (original) Dirac equation yields the coupled radial equations: 
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cFeE
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cGeE
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 (3-246) 
( )−ψ  yields similar coupled equations with opposite sign of E and eΦ, as expected for exchange 

of matter and anti-matter (one interpretation is that antiparticles represent positive-energy 
“holes” in a sea of negative-energy particles. If we want two positive energy solutions related by 
spatial inversion then we need to use different eigenfunctions).  The energy levels for ( )+ψ  in a 

negative Coulomb potential are therefore equal and opposite to the energy levels of ( )−ψ  in a 

positive Coulomb potential. The need for this result was the reason for assuming that the parity 
operator locally inverts the scalar potential term ( )rΦei . 

Weak interactions 
The projection operator for left-handed spinor components is: 

( )ψβψ 1−= IL  (3-247) 

The unit matrix I  is a scalar and 1β  is a pseudoscalar. However, the projection operator does not 
violate mirror symmetry so long as the reflected counterpart ( ) ψβψ MIR 1+=  is as physically 
plausible as the original projected wave function. Since the new spatial inversion operator 
exchanges matter and antimatter, all of the elementary particles involved in the weak interaction 
do in fact have spatially reflected counterparts in nature (electrons and positrons, left-handed 
neutrinos and right-handed anti-neutrinos, etc.). The mathematical form of the weak vertex factor 
is entirely consistent with mirror symmetry. 

Comparison with conventional PC 
The conventional PC operator is: 

( ) ( ) ( )rrr −=−= *
2

5*20 ii ψσγψγγψPC  (3-248) 

This differs from our spatial inversion operator by an arbitrary phase factor, the factor of 

2
0σγ and conjugation of the scalar imaginary (denoted by *#ψψ → ). The factor 2σ   is, within 

a phase factor, simply a rotation by π about the x2 axis: ( )2iexpi 22 πσσ −= . Complex 
conjugation of the scalar imaginary inverts the spin component S2: 

[ ] [ ][ ] 22
†*

2
†**

2
†*

2
*†

2 SPCS −=−=−=== ψσψψσψψσψψσψ  (3-249) 

Therefore the net effect of *#2ψσψ →  is to invert the spin. 

The additional factor of 0γ  inverts velocity by rotation of the velocity-representation 
matrices. Applied to the matter and anti-matter eigenfunctions, it is equivalent to inverting the 
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spatial arguments in the wave functions. Therefore the conventional PC operator, though it 
exchanges matter and anti-matter, differs significantly from the new spatial inversion operator M. 

3.8.2. Time reversal 
Physically, time reversal must invert the time derivative operator, velocity, and spin 

independently of the change in argument. One of the electromagnetic potentials must also be 
inverted. Velocity and spin are both inverted by the transformation: 

( ) ( ) ( )tttB B −== *#2ψσψψ  (3-250) 

The velocity-representation space ( )045 ,, γγγ  is unaffected by this transformation. By contrast, the 

conventional time reversal operator ( ) ( )ttT −= *2i ψσψ  inverts 4γ  but not other matrices of velocity-
representation space. This suggests that the conventional time reversal operator is also incorrect. 
However, unlike the conventional parity transformation, there is no empirical evidence to validate this 
claim. 

Applied to the Dirac equation, the new time reversal operator yields: 

[ ]{ }
[ ] 0iii~

iii~

5*#*#05

505

=−Φ−Ω−∂+∂−=

−Φ+Ω+∂+∂

BBiB
i

BBBi
i

t

i
i

i
i

t

Aeec

AeecB

ψσγγσγ

ψσγγσγ

 (3-251) 

We recover the original form of the Dirac equation if Ω−=ΩB  (i.e. Ω  is an eigenvalue of an 
operator which transforms like a time derivative) and the potentials are interpreted as derivatives.  

We assume the potentials to transform as: 

( )[ ] ( )
[ ] ( )teeeB

teeteB

BB

BB

−−==

−Φ=Φ=Φ

AAA iii

iii
*#

*#

 (3-252) 
According to our interpretation of matter and anti-matter as mirror-images, time reversal 

does not exchange the two. 

3.8.3. Combined Transformations 
The combined MB transformation is: 

( ) ( ) ( )tttMB −−=−−= ,i,, *2*
2

4 rrr ψγψσγψ  (3-253) 
This is closely related to the conventional charge conjugation transformation C : 

( ) ( ) ( )tttC ,,, *2*
2

4 rrr ψγψσγψ ==  (3-254) 

The conventional charge conjugation operator inverts the spin and velocity in place, without 
inverting the spatial or temporal coordinates. In terms of dynamical behavior, charge conjugation 
has the same effect as inverting the sign of the electromagnetic potentials in the Dirac equation. 
The conventional PT transformation is: 
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( ) ( )ttPT −−= ,, *
2

0 rr ψσγψ  (3-255) 

This differs from the new MB transformation by the factor 5γ , which rotates the velocity-
representation space by 180 degrees.  
The conventional PCT transformation is: 

( ) ( )ttPCT −−= ,, 5 rr ψγψ  (3-256) 

 This transformation is the conventional theoretical relation between matter and antimatter. 
Compared with the MB operator, it differs only by charge conjugation (which has similar effect 
to restoring the potentials inverted by MB) and by the factor 5γ . 

 
 

3.9. Mathematical and Physical Properties of Spinors 
“…our present thinking about quantum mechanics is infested with 
the deepest misconceptions.” 
—Stephen Gull, Anthony Lasenby, and Chris Doran [1993] 

3.9.1. Spinors and Inner Products 
An understanding of some mathematical properties of spinors will be useful. Expressions for 
physical quantities (e.g. Q) are computed from operators (e.g. Q) in the form: 

[ ] [ ][ ] [ ] [ ][ ] ⎥⎦
⎤

⎢⎣
⎡ +=+=

†††††

2
1

2
1Q ψψψψψψψψ QQQQ

 (3-257) 

Since the adjoint of a scalar is its complex conjugate, the physical quantity Q is real-valued. 
When integrated over space, such expressions take the form of an inner product: 

( ) ( )[ ] [ ]∫ +=+= rdfggffggf 3††
2
1,,

2
1Q

 (3-258) 
The quantity <Q> is the integrated value (or expectation value in QM). 
A complete space of functions with an inner product satisfying some simple properties (e.g. 
linearity) is called a ‘Hilbert space’. It suffices for our purposes to say that the inner product 
defined above satisfies all of the necessary criteria. 
[Note: the inner product is often defined using only one of the terms in the integrand above 
(without the factor of one-half). With this definition local densities may be complex even though 
the integral is real.] 

The inner product between two spinor functions is analogous to the dot product between 
two vectors or the correlation between two scalar functions. The inner product of a spinor 
function with itself is its positive-definite magnitude: 

( ) 0, 3†2 ≥∫== rdfffff  (3-259) 
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In terms of components this is: 

( ) 0, 3* ≥= ∫∑ rdffff
α

αα
 (3-260) 

The local projection ( )rψΦp  of one function ( )rψ  onto another function ( )rΦ  is defined as: 

( ) ( ) ( )
( ) ( )

( )r
rr
rrr Φ

ΦΦ

Φ
=Φ †

† ψ
ψp

 (3-261) 

The global projection ( )rψΦP  of one function ψ  onto another function Φ  is defined as: 

( ) ( ) ( )rr Φ
Φ

Φ
=Φ 2

,ψ
ψP

 (3-262) 

The term ‘projection’ by itself generally refers to the global projection in the literature. For 
comparison, the projection of a vector a onto a vector b is the component of a that is parallel 
with b: 

[ ]bbab
b

baab ˆˆ
2 ⋅=
⋅

=P
 (3-263) 

If an operator has Hermitian ( HH =† ) and anti-Hermitian ( AA −=† ) parts, then only the 
Hermitian part contributes to the physical value: 

[ ][ ] [ ][ ][ ] [ ][ ] ψψψψψψψψ HAHAHAHAH ††††††

2
1

2
1Q =+++=+++=

 (3-264) 
 
From this we can conclude that the condition for a real-valued inner product is that the operator 
is Hermitian ( QQ =† ). For example consider the spatial derivative jj x∂∂=∇ : 

( ) ∫ ∇=∇ rdffff jj
3†,  (3-265) 

The adjoint is: 

( ) [ ]∫ ∇=∇ rdffff jj
3††,  (3-266) 

Integration by parts yields: 

[ ] [ ] [ ]ffrdffdSrdffrdff j
x
xjjj
j

j
∇∫∫∫−∫∫=∫∇=∫ ∇

†3†3†3† 2

1  (3-267) 
We assume that the spinor functions fall to zero prior to reaching the boundary of integration (i.e. 
that the boundary is sufficiently far that there is no contribution to the volume integral outside 
the boundary). This assumption allows us to discard the boundary term, but limits our ability to 
give physical interpretation to the local functions. Assuming the boundary contribution to be 
zero, we have: 
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( ) ( )ffff jj ∇−=∇ ,, †

 (3-268) 
Hence the spatial derivative is an anti-Hermitian operator (minus sign rather than plus sign).  

Clearly this property holds for all components of the gradient, so we can write: 

( ) ( )ffff ∇−=∇ ,, †
 (3-269) 

Which leads to the rather obvious expression for the integrated value: 

[ ] 03†3†3†† =∫ ∇+∇−=∫ ∇+∇=∇ rdffrdffrdffff  
This relationship in operator form is: 

[ ] [ ] ∇−=∇=∇ †††† fff  (3-270) 

Note that the form of the gradient operator is not changed by the adjoint operation ( ∇=∇† ). 
The sign change comes from transposing the operator from the left to the right side (via 
integration by parts). Note that: 

[ ] [ ] [ ]ffffff ∇+∇=∇ †††
 (3-271) 

This expression is obviously not zero in general, but its volume integral is zero as long as the 
function f falls off sufficiently rapidly near the integration boundaries. 

It is simple to construct a Hermitian operator from the gradient operator by multiplying it 
with the unit imaginary: 

( ) ( )ffff ∇+=∇ i,i, †
 (3-272) 

Matrix	  Algebra	  

Before proceeding further, it will be useful to tabulate some relationships between matrices. 
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In the Dirac representation of quantum mechanics these matrices represent ( )0055 ,i, γγγγ , 
respectively. 

In spherical coordinates the sigma matrices are: 
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The	  operator	   ψ∇⋅σ 	  therefore	  yields:	  
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In cylindrical coordinates ( zr ,,φ⊥ ) the matrices are: 
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3.9.2. Wave Properties of Matter 

We have shown that classical wave theory can describe Fermion dynamics.  This result lends 
support to recent efforts to revive the classical aether (or ether) as a medium of propagation of 
matter waves. Duffy (2006) has surveyed modern aether theory. 

The model of vacuum as an ideal elastic solid was quite successful in explaining classical 
properties of light in the 19th century (see e.g. Whittaker (1951)). Quantum effects are only 
apparent in interactions with matter, which might be interpretable as classical soliton waves. At 
present there appears to be no satisfactory description of rotational waves in an ideal elastic 
medium. Kleinert (1989) attempted to include rotations in the elastic energy but was compelled 
to introduce new elastic constants dependent on an arbitrary scale length. Close (2002) showed 
that torsion waves (with rotation axis parallel to wave velocity) can be described by a Dirac 
equation. In this book we use a wave equation with convection terms as the classical basis for the 
quantum mechanical momentum and spin operators. Schmelzer (2009) recently demonstrated 
that a cellular lattice model can yield the same group structure as the Standard Model. This 
model is astonishingly similar to the rotating elastic cell model which Maxwell used to derive the 
equations of electromagnetism (though the rolling particles bordering Maxwell’s cells were 
replaced by an unspecified material between the lattice cells). 

Many physical properties of matter can be derived from a wave model of matter. The 
Uncertainty Principle applies to all classical waves and represents a basic property of Fourier 
transformations. Lorentz invariance is also a property of waves, and Special Relativity is 
therefore a consequence of any wave theory of matter. For example, the relativistic phenomenon 
of time dilation is simply explained by the fact that stationary soliton waves execute periodic 
orbits (e.g. circles) whereas moving solitons execute orbits which have longer wave paths in each 
cycle (e.g. spiral or cycloidal). Hence a moving clock which counts soliton wave orbits ticks 
faster than a similar moving clock. Absolute motion with respect to the aether would not be 
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detectable because without prior knowledge of absolute motion it is unknown whether a signal is 
Doppler shifted at the source or the receiver, or both.  

There has been considerable interest in describing elementary particles as soliton (or particle-
like) wave solutions of a nonlinear Dirac equation. See Rañada (1983) for a short review. More 
recent works include Fushchych and Zhdanov (1997), Gu (1998), Bohun and Cooperstock 
(1999), and Maccari (2006). These efforts all suffer from arbitrariness in the choice of 
nonlinearity. Identification of the Dirac equation with a second-order classical wave equation 
provides a simple means for interpreting, literally or analogously, any non-linear terms.   

The Klein-Gordon (or relativistic Schrödinger) operator can be factored into a product of two 
Dirac operators acting on the wave polarization (or amplitude) a: 

{ } { }{ }aa MMMc iitiitt ii 00
2222 −∂+∂+∂+∂=+∇−∂ γγγγ  (3-277) 

where the commutation relations are: 
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The quantities µγ  and unit imaginary (i) have traditionally been regarded as matrices, but they 
can also be interpreted geometrically using multivariate vectors [Hestenes 1967, 1973, 1990]. 
The wave polarization a is a classical 3-vector in Galilean space-time. The Minkowski metric of 
relativity is introduced through the operators.  
If we define a wave function: 

{ }aMiit i0 −∂+∂≡Ψ γγ  (3-279) 
then the resultant first-order Dirac equation is equivalent to the original Klein-Gordon equation: 

{ } 0i0 =Ψ+∂+∂ Miit γγ  (3-280) 
In the above case the two Dirac operators have different sign for the mass term. Rowlands [1998, 
2005, 2006] and Rowlands and Cullerne [2000] used a combination of multivariate 4-vectors and 
quaternions to write the Dirac equation in a nilpotent form in which the two successive Dirac 
operations are identical. This formulation yields an elegant classification of particle states within 
the Standard Model.  

Standard solutions of the Klein-Gordon equation yield different energy eigenvalues than the 
Dirac equation (see e.g. Schiff [1968]). This result is quite peculiar given the fact that each 
component of the Dirac wave function actually satisfies the Klein-Gordon equation! Factoring 
the Klein-Gordon equation cannot change its eigenvalues. The problem is that in the usual 
analysis of Klein-Gordon, the angular functions are chosen to be eigenfunctions of the squared 
orbital angular momentum L2, whereas in the analysis of the Dirac equation the angular 
functions are eigenvalues of the squared total angular momentum J 2. The difference is not in the 
equations, but in the choice of angular eigenfunctions. The usual analysis of the Klein-Gordon 
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equation neglects the spin contribution from rotation of wave velocity. These solutions represent 
bosons with zero spin. Solutions obtained by using angular eigenvalues obtained from Dirac 
theory represent fermions with spin one-half. 
In the next chapter we shall see that a scalar gravitational field and its effect on the space-time 
metric may be interpreted as a spatially varying light speed. See Whittaker (1954) for the 
historical development of this idea which originates with Einstein (1911, 1912) and has also been 
investigated more recently (de Felice (1971), Evans et al (2001)). This interpretation is consistent 
with general relativity, which also predicts a variation of light speed proportional to the 
gravitational potential (Einstein 1956). In an elastic solid aether, compression or variations in 
elasticity imply variable wave speed and hence provide a reasonable physical model for basic 
gravitational effects.  

3.10. Summary 
Even if you are a minority of one, the truth is the truth. 
—Mohandas Gandhi 

In this chapter we interpret the Dirac equation as a classical second-order wave equation for 
rotational waves in an elastic medium. The first order spatial and temporal derivatives are 
represented by a bispinor wave function. Half-integer spin is attributable to the co-existence of 
waves traveling in opposite directions along the gradient axis. The wave function can be factored 
into constant matrix, a single amplitude, a three-dimensional Lorentz velocity boost, rotation, 
and an arbitrary change of representation. Wave interference yields both the Pauli exclusion 
principle and the Lorentz force. The electromagnetic potentials represent wave interference. 
Interpreting the classical bispinor equation as describing an electron, it is found that the mass is 
associated with radially inward acceleration of the wave, suggestive of a soliton. The classical 
theory is consistent with parity conservation. Hence it appears that classical wave theory 
constitutes an intelligible basis for the physical attributes of matter.  
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Figure 3.1  .J. Thomson (1856-1940). 

Source: http://nobelprize.org/nobel_prizes/physics/laureates/1906/thomson-bio.html 
Figure 3.2  Ernest Rutherford (1871-1937). 
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Source: http://nobelprize.org/nobel_prizes/chemistry/laureates/1908/rutherford-
bio.html 

Figure 3.3  Arnold J.W. Sommerfeld (1868-1951). 
Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Sommerfeld.html 

Figure 3.4  Wolfgang  Pauli (1900-1958). 
Source: http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Pauli.html 

Figure 3.5  Werner Heisenberg (1901-1976). 
Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Heisenberg.html 

Figure 3.6  Erwin Schrodinger (1887-1961). 
Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Schrodinger.html 

Figure 3.7  Paul Dirac (1902-1984). 
Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Dirac.html 

 
 



 

 
138 

Chapter 4. Wave Refraction and Gravity 
 

 “It is only the relation of the magnitude to the instrument that 
we measure, and if this relation is altered, we have no means of 
knowing whether it is the magnitude or the instrument that has 
changed.” 
−Henri Poincaré, Science et Méthode 1897  
 

4.1. Introduction 
 

"Gravity is probably due to a change in the structure of the aether, 
produced by the presence of matter.” 
− George Francis FitzGerald 1894 

 
Isaac Newton [Figure 4.1] published his theory of gravity in Principia in 1687. Newton 

realized that a force proportional to the inverse square of the distance between two masses would 
yield elliptical planetary orbits with the sun at one focus of the ellipse. He conjectured that the 
gravitational force might represent a tendency of matter to move from denser to rarer regions of 
the aether. Tests of Newton’s theory were sometimes difficult and required planetary 
observational data accumulated over long periods of time. For example, in 1784 Pierre-Simon 
Laplace [Figure 4.2] determined that the apparently secular (non-periodic) motions of Jupiter and 
Saturn were actually periodic with a period of 929 years, the frequency corresponding to the 
difference between five periods of Saturn and two periods of Jupiter. Although Newton’s law 
eventually succeeded in explaining most astronomical observations, a few observations resisted 
interpretation. This included the rate of rotation of the elliptical axes of Mercury.  

 

 

 

Figure 4.1  Isaac Newton  (1643 – 1727) Figure 4.2  Pierre-Simon Laplace  (1749-1827) 
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Lóránd (or Roland) Eötvös  [1891] [Figure 4.3] reported experimental results indicating 

that inertial mass and gravitational mass are exactly equal. Albert Einstein [1907] [Figure 4.4] 
then proposed the Principle of Equivalence between an accelerating reference frame and a 
gravitational field. He also deduced that the speed of light must vary in a gravitational field 
[Einstein 1911, 1912]. 

 

 

 

Figure 4.3  Lóránd Baron von Eötvös (1848-1919) Figure 4.4  Albert Einstein (1879 – 1955) 
 

 
Harry Bateman [1909] observed that the condition for propagation of light: 

022222 =−−− dzdydxdtc  (4-1) 
does not hold in a gravitational field. Instead a condition of the form: 

02 =∑= νµ
µν

µν dxdxgds
 (4-2) 

describes the propagation of light in a gravitational field which is characterized by the 
coefficients µνg .  Time is denoted by 0x  and the coefficient 00g  is equal and opposite to the 
spatial coefficients iig  in the absence of gravity. 

Albert Einstein and Marcel Grossmann [1913] proposed that particle motion in a 
gravitational field is described as a geodesic in space-time determined by the variational 
equation: 

0=∫dsδ  (4-3) 
with ds defined as above. Combined with an equation relating the metric coefficients with the 
energy tensor of matter, this idea formed the General Theory of Relativity [Einstein 1915a,b,c]. 
David Hilbert [1915] [Figure 4.5] showed that the entire theory could be formulated using a 
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variational principle. Karl Schwarzschild [1916] [Figure 4.6] found exact solutions for a point 
mass. 

 

  

Figure 4.5  David Hilbert  (1862 – 1943) Figure 4.6  Karl Schwarzschild (1873-1916) 
 

       
 Many predictions of the General Theory have been successfully validated by 
experimental observations. In addition to the usual attraction between massive objects, the theory 
also accurately predicts deflection of light rays around massive objects, deviations from simple 
elliptical planetary orbits, and non-Euclidean curvature of space. The theory also predicts the 
existence of black holes: regions where gravity is so strong that light cannot escape. There is 
now very strong astronomical evidence of black holes, including one at the center of our own 
galaxy.  
 In this chapter we will compare wave refraction with General Relativity. In particular, we 
will use the analogy of compression of a wave-carrying medium, such as an elastic solid. 
Although Albert Einstein is sometimes credited with eliminating the need for an aether to carry 
light waves, his own view was that “…according to the general theory of relativity space is 
endowed with physical qualities; in this sense, therefore, there exists an ether” [Albert Einstein, 
1920 Leiden Lecture]. But Einstein did not believe that the aether was a substance whose 
motions could be tracked. Dirac, however, concluded that “It is necessary to set up an action 
principle and to get a Hamiltonian formulation of the equations suitable for quantization 
purposes, and for this the aether velocity is required.” [Dirac 1952]. 
 

Other investigators have attempted to model the vacuum as an elastic solid. Two recent 
efforts are those of Hatch [1992] and Karlsen [1998]. Gravity has been interpreted by many as 
refraction due to a variable index of refraction of space [Alsing et al. 2001, Anonymous 2002, 
Colsman 1997, Evans et al. 2001, de Felice 1971, Peters 1974]. Although many physicists 
believe that gravity should have a quantum mechanical description, the classical description 
adequately explains a wide range of gravitational phenomena.  
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4.2. Wave propagation in a non-uniform medium 
 

"It is worth noting that, strictly speaking, there cannot be any point 
particles in general relativity. They have to be much larger than 
their Schwarzchild radius ..." 
− Hagen Kleinert [1989] 

 
Since elastic waves yield bispinor equations similar to the equations of quantum 

mechanics, it is natural to question whether elastic waves can produce gravity. A simple 
mechanism is that twisting of the medium can generate tension which causes the medium to 
compress. This effect can be easily observed using a rubber band. Twisting the rubber band 
stretches it, thereby generating tension which pulls inward from the ends.  The square of the 
wave speed is inversely proportional to density and therefore decreases as one approaches the 
region of increased density. Since waves refract in the direction of decreased wave speed there is 
a mutual attraction between rotational waves [Figure 4.7]. This mechanism is consistent with the 
weakness of gravity with respect to other forces (it is a second-order effect), and also provides an 
explanation for gravity being an attractive rather than repulsive force. 

 

 
Figure 4.7  Waves refract toward the direction of slower wave speed. The rays are perpendicular to surfaces 

of constant phase. 
 

4.2.1. Dispersion Relation and Metric Factors 
 
Now consider the propagation of elastic waves in an static ideal elastic medium with non-
uniform density.  For soliton waves the dispersion relation can be written as: 

2222 Mkc +=ω  (4-4) 
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The dispersion relation relates the various sources of phase shifts in the wave (time derivatives 
and spatial derivatives). The mass term represents the contribution of convection and rotation to 
the frequency, whereas ck represents the contribution of restoring forces or torques in the 

medium, resulting in wave propagation at the reduced frequency ( ) 2122 Mck −==ʹ′ ωω . In 
terms of the reduced frequency the dispersion relation appears to represent ordinary wave 
propagation: 

 
222 kc=ʹ′ω  (4-5) 

The condition of constant phase is: 

0=⋅−ʹ′ lk ddtω  (4-6) 

This equation describes wave propagation at speed c (since ckdtdl =ʹ′=ω ) with dl parallel to 
k, as distinct from convection and rotation. In other words, a disturbance evolves over time due 
to convection and rotation of the medium (resulting in mass) and wave propagation 
(momentum). The wave propagation occurs with the characteristic wave speed as described 
above, but convection and rotation increase the frequency, thereby raising the phase velocity and 
reducing the group velocity. 

It is customary to assume positive frequency, in which case the relative sign of the wave vector 
may need to be altered: 

lk ddt ⋅±=ʹ′ω  (4-7) 

The phase velocity ( cv ≥Φ ) is: 

( )
c

Mkdt
dlv 2122 −

===Φ
ω

ωω  (4-8) 

The group velocity ( cvG ≤ ) is: 

( ) cMck
dk
dvG ω

ω
ω

ω
2122

2 −
===

 (4-9) 

Using the propagation condition, we can define a ‘phase separation’ χd  for arbitrary space-time 
paths which measures the deviation from the propagation condition ( kdldt ±=ʹ′ω ): 

22222 dlkdtd −ʹ′=ωχ  
This equation could be modified by multiplying any non-zero variable on both sides. For 
example, we define the ‘differential separation’ ds by the relation: 
Error! Objects cannot be created from editing field codes. 
An alternative formulation yielding Fermat’s principle can be found in Evans et al. [2001]. This 
differential separation should be zero for the true propagation path. The integrated separation is: 

Error! Objects cannot be created from editing field codes. (4-10) 
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If the speed of light is variable, then neighboring space-time paths must still yield equal phase 
shifts in order to maintain the transverse orientation of the wave. This condition yields the 
equation of a geodesic: 
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⎤
⎢
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−=∫ dl
c
cdtc

c
cds δδ  (4-11) 

This expression is equivalent to Einstein's formulation of general relativity [Einstein 1956 p. 78] 
if we assume a diagonal metric tensor with: 

c
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So that the geodesic equation is: 
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With dtcdx 00 = . 

Hence Einstein's metric factors can be interpreted quite simply as the normalized values 
of the squared wave number and (reduced) frequency. Einstein's formulation is a bit more 
general in that it allows for non-isotropic metrics, and the above formula can be easily 
generalized to allow for independent variations of xx kk 0 , yy kk 0 , and zz kk 0  (with 
appropriate dispersion relation). It is not clear that this generalization is important in nature, so it 
is not pursued here. 

To simplify the integral, we introduce a parameter τ  and rewrite the geodesic equation 
as: 

021
21

=∫≡∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ τδτ

ττ
δ

µν

νµµν dfd
d
dx

d
dx

g
 (4-14) 

The Euler-Lagrange equations are: 
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 (4-15) 
Since the metric tensor is symmetric, this yields: 
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 (4-16) 

We want to isolate 22 τν dxd  in the above equation. This takes considerable effort to obtain: 
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For velocities small compared with the speed of light tc0≈τ  and 1≈τddt , so to lowest order: 
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 (4-18) 

The right hand side may be interpreted as gravitational acceleration and is equivalent to 
Einstein’s expression [Einstein 1956 p.89] except for a different sign convention (Einstein uses 
imaginary time, thereby changing the sign of the temporal metric component).  
 

4.2.2. Relation between metric components 
 

For small changes in the speed of light with 0cc ≈ : 

c
c

c
c 0
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Δ−≈Δ

 (4-19) 

In terms of metric components: 

0c
cgggg zzyyxxtt

Δ
≈Δ=Δ=Δ≈Δ  (4-20) 

This equality of first-order changes in metric components is in agreement with Einstein’s result 
[Einstein 1956 p.89] except for the temporal sign convention. It is related to the fact that the 
Einstein tensor has zero divergence. 

 Using this result in the expression for gravitational acceleration yields: 
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Hence, to a first approximation, the gravitational acceleration is directly proportional to the 
gradient of the squared speed of light. The gravitational potential is: 
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20 cccc

c
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=Δ≈Δ≈
 (4-22) 

where 2cΔ is the difference in the square of the speed of light from its unperturbed value. This 
expression for the gravitational potential is consistent with General Relativity  [Einstein 1956 p. 
84-93]. One may always offset this potential by a constant to make the values positive. 

4.3. The gravitational potential 
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“The most incomprehensible thing about the universe is that it is 
comprehensible.” 
− Albert Einstein 

 
The change in speed of a wave in an elastic solid may be attributed to either change of density or 
change of elastic constants. In this section we suppose that the change is due to compression. The 

equation of compression waves with speed cc  in an elastic solid is: 

 (4-23) 

Assuming the density to be slowly varying allows the time derivatives to be neglected: 

 02 =∇ ρ  (4-24) 

Many large massive objects are nearly spherical in shape, implying only a radial dependence: 
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which has the solution: 
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where 0ρ  and η  are constants. The speed of transverse waves is given by: 
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where µ  is the shear modulus. The fractional variation of 2c  is given by: 
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Hence the change of wave speed differs from the (1/r) dependence of the classical gravitational 
potential by the addition of higher order terms. However, even near the edge of the sun the 
variation is only 62

0
2 10−−≈ccδ , so the second order difference is extremely small. 

 The change in the speed of light is evidently caused by the presence of mass (M) and falls 
off inversely proportional to distance (r) away from a spherically symmetrical distribution of 
mass (except for very small distances). The expression for the Newtonian gravitational potential 
is: 
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( )
r
GMrU =

 (4-29) 

Where 21311 skgm10673.6 −−−×=G  is the gravitational constant. Notice that the gravitational 
potential has units of velocity squared. 

4.4. Consequences of gravity 

4.4.1. Newtonian gravity 
Given the form of the gravitational potential and the expression for acceleration in terms of 
variations in the speed of light, we can express the gravitational acceleration of an object in 
terms of the potential: 
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The acceleration is simply equal to the gradient of the gravitational potential, as in Newtonian 
gravity. 

4.4.2. Bending of light 
For propagation of light waves, we can no longer neglect changes in position relative to changes 
in time. Take the velocity in the 3x  direction to be c and the gradient in the speed of light to be 
along 1x  as in  
Figure 4.8.  
 

 
 

Figure 4.8 Apparent position of a star and the path of a light ray past the sun. 
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This is twice the Newtonian acceleration rate. 
Integrating over a path with a 1/r gravitational potential yields: 
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The gravitational coefficient for the sun is: 
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This yields a perpendicular velocity of: 
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Just outside the radius of the sun, m100.7 8
1 ×=x : 
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The angle of deflection is the ratio between the deflection velocity and the speed of light: 
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 (4-36) 

This deflection was first observed during a 1919 solar eclipse [Dyson, et al 1920]. More recent 
measurements use radio waves, which do not require waiting for eclipses [Lebach et al. 1995]. 
 Since the light slows down near the sun, there is also a delay in the signal as compared 
with propagation in free space. This delay has also been measured and is in agreement with 
experiment [Shapiro et al. 1977, Bertotti et al. 2003]. 

4.4.3. Curvature of space 
One supposedly bizarre prediction of general relativity is that “space is curved”. What this means 
is that measurements of geometrical shapes are not consistent with Euclidean geometry. For 
example, suppose we measure the circumference of a circle of radius 1R  by shining light past a 
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series of mirrors orbiting in space as shown in Figure 4.9. For simplicity, we will treat the earth 
as a point-like source of gravity.  
 

 

Figure 4.9  Distance measurements in a gravitational field. 
 
We take the speed of light to be an approximation of the form derived above: 
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Neglecting any delay during the reflection process, the light propagates with constant speed 
1
c  

over a distance 12 Rπ , so that the propagation time is: 
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Since one cannot directly determine the absolute speed of light, the measured circumference 
1
L  

is: 
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The circumference of a second circle with radius may be measured similarly. To avoid effects of 
different clock speeds, the transit time can be measured using the clock at 1R  by sending signals 
when the light wave is transmitted and when it is received by the satellite at 2R . The measured 
circumference of the circle at 2R  is: 
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The time of flight of light between the two circles is: 
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This means that the measured difference in radii is: 
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According to Euclidean geometry, the two circumferences should be related by: Δ=− π212 LL . 

Instead, we have: 
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 (4-43) 
Compared with Euclidean geometry, the measured circumference is smaller than expected for 
the measured diameter. This is the meaning of “curved space”. However, the apparent curvature 
is actually attributable to the variation in the speed of light, which distorts the measurement of 
distances. 

4.4.4. Black Holes 
We saw above that light is deflected when it passes by a massive object such as the sun. If the 
gradient in the speed of light is large enough, then the light can become trapped. An object 
whose gravitational field is strong enough to trap light is called a “black hole”.   
 
For the geometry described above in  
Figure 4.8  with variable 1x  replaced by r at the point of closest approach, the centripetal 
acceleration condition for trapping light is: 
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In terms of the gravitational potential, this condition combined with (4-22) and (4-31) yields: 
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In terms of the mass of the black hole: 
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Solving for r: 
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This radius is called the “Schwarzchild radius”.  Any light which reaches this point from the 
outside will be trapped. 

 Black holes were once considered an absurdity, but there is now a wealth of evidence for 
their existence in the universe. 

4.4.5. Gravitomagnetism 
Thus far we have regarded the gravitational potential, and the elastic aether, as being 

static but variable in space. This point of view cannot be valid for observers with arbitrary 
relative motion. If the gravitational disturbance propagates through space with a speed different 
than that of light, then it could be possible to determine the absolute rest frame of the aether from 
the directional changes in the apparent velocity of the gravitational disturbance (gravity waves). 
However, if the gravitational disturbance propagates with the same speed as light waves, then it 
will conform to the ordinary Lorentz transformations and there would be no way to determine an 
absolute reference frame. We will assume that this is the case. 

Relative motion of the source of a gravitational disturbance (change of elastic aether) 
does affect wave propagation. Just as the magnetic force can be attributed to the Lorentz 
contraction of a moving line of charged particles, a magnetic ‘coriolis’ force may  be attributed 
to Lorentz contraction of moving matter. 

Start from a reference frame with static gravitational sources: 
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Applying Lorentz transformations to the second index yields: 
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And applying Lorentz transformations to the first index then yields: 
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Moving gravitational sources therefore introduce non-diagonal components of the metric 

tensor. For motion in the x-direction, the metric components to first order in cv=β  are: 
 

00

0

0

2

1

1

c
c

c
v

gg

c
cggg

c
cg

i
itti

zzyyxx

tt

Δ
=Δ=Δ

Δ
+−=Δ=Δ=Δ

Δ
+=

 (4-51) 

For example, the gravitational potential of an infinite rod moving with speed xv  parallel to its 
axis may appear to be static, but any perturbation would actually propagate along with the rod. 
The result is that the gravitational deflection of an object is increased if the relative velocity 
between it and the gravitational source is increased. This is called the gravitomagnetic, or frame-
dragging, effect. The existence of this effect has apparently been confirmed in experiments, but 
doubts about accuracy remain [Iorio 2009]. 

4.5. Summary 
 

“The bigger they are the harder they fall.”  
− Anonymous  

 
The above analysis demonstrates that gravity can be interpreted as wave refraction in a non-

uniform medium. Unlike quantum theories in which gravity waves are assigned a spin of 2, the 
present model treats gravity as a scalar associated with changes in either density or elasticity of 
the solid aether. There is absolutely no physical evidence indicating that gravity should be 
quantized.  

Compression waves in a solid can in principle propagate at a speed equal or greater than the 
speed of transverse (or torsion) waves. Therefore it is quite possible that gravity waves propagate 
at a speed greater than c. If that is the case then the measured speed would also be direction 
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dependent due to the earth's motion relative to the vacuum. Such a difference in wave speeds 
would also be evident in gravitomagnetic effects. 

In summary, gravity may be interpreted as a description of wave refraction due to decreased 
velocity of light in the vicinity of matter. If the aether is taken to be an elastic solid, then the 
variation in light speed might be attributed to compression or change in elasticity. The spatial 
metric components are interpreted as the ratio between the squared wave numbers at different 
positions. The temporal metric component is interpreted similarly as the ratio between squared 
frequencies at different positions. Conservation of angular momentum and energy yield the 
correct relation between spatial and temporal metric components. The derived form of the 
gravitational potential falls off as 1/r for large distances but also includes higher-order terms. 

Gravitation deflects light in accordance with the laws of wave refraction. It also makes space 
appear to be non-Euclidean. Black holes bend light rays so strongly that the light becomes 
trapped. All of these effects are easily understood using the classical model of an elastic solid 
aether. 
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Figure 4.1  Isaac Newton  (1643 – 1727). 

Source: http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Newton.html 
Figure 4.2  Pierre-Simon Laplace  (1749-1827). 

Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Laplace.html 
Figure 4.3  Lóránd Baron von Eötvös (1848-1919). 

Source: http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Eotvos.html 
Figure 4.4  Albert Einstein (1879 – 1955). 

Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Einstein.html 
Figure 4.5  David Hilbert  (1862 – 1943). 

Source:  http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Hilbert.html 
Figure 4.6  Karl Schwarzschild (1873-1916). 

Source:  http://www-groups.dcs.st-
and.ac.uk/~history/PictDisplay/Schwarzschild.html 
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We have seen that rotational, or torsion, waves in an elastic solid obey the same basic 
equation as matter waves: the Dirac equation. With appropriate dimensional scaling of the wave 
function, all dynamical quantities (momentum, angular momentum, and energy) have consistent 
mathematical expressions for both torsion waves and matter waves. Although we have not yet 
found specific soliton solutions for elementary particles, we are clearly on the right track. Even if 
the specific model proposed here proves to be inadequate, it should be possible to modify the 
theory to achieve agreement. Therefore the model of the vacuum as an elastic solid, even if 
incomplete or inaccurate, should still be a valuable tool for determining the actual structure of 
the universe. 

Torsion solitons seem to fit the requirements of wave-particle duality. If the internal structure 
is unchanged by an interaction (elastic collision) then the wave packet can be treated as a point 
'particle'. However, they are pure waves and hence subject to uncertainty principles. The theory 
predicts the existence of both matter and anti-matter since any solutions must come in pairs 
which are related by conjugation of handedness at each point. 

Recall that nature appears to be symmetric with respect to conjugation of both left and right 
handedness and matter and anti-matter, but not either one separately. The torsion wave 
interpretation of the Dirac equation explicitly attributes handedness to matter and anti-matter, 
thereby restoring the intuitive expectation of mirror symmetry of physical phenomena.  

We have seen that soliton wave correlations are computed in the same manner as for 
quantum mechanics.  

The combination of soliton waves is very familiar in nature: atoms are formed by combining 
protons, neutrons, and electrons. Quantum mechanics (and quantum field theory) has yielded 
remarkable success in predicting the likelihood of various outcomes from particle interactions. 
However, quantum theory cannot be regarded as complete unless it can describe what happens 
during an interaction.  

A popular cartoon by Sidney Harris [www.sciencecartoonsplus.com/pages/gallery.php] 
shows a professor deriving a physical result on an equation-filled blackboard. In the middle of 
the derivation is written, "then a miracle occurs.”  Although intended as a joke, this cartoon aptly 
describes the present state of quantum theory. A photon approaches an atom, then disappears as 
the atom jumps from one energy level to another. No one can say what was happening while the 
photon was disappearing and the atomic energy level was jumping. The theory is incomplete and 
must rely on a miracle. 

Rotational, or torsion, waves in an elastic solid should have solutions which satisfy a Klein-
Gordon equation in each dimension, with as many as three different masses attributed to a single 
soliton solution. The existence of three coupled equations suggests an explanation for various 
types of elementary particles: leptons with one mass term, mesons with two mass terms of equal 
value, and baryons with three mass terms (quarks). Perhaps these are superficial analogies, but 
we won’t know until the classical solutions are studied. 

We saw that interactions of torsion solitons involve real-valued potentials. This is closely 
analogous to the Standard Model, which "asserts that the material in the universe is made up of 
elementary fermions interacting through fields, of which they are the sources. The particles 
associated with the interaction fields are bosons" [Cottingham and Greenwood 1998]. In standard 
quantum mechanics the potential is assumed to be directly associated with particles. In the 
torsion interpretation, the 'particles' associated with the potentials represent wave packets whose 
absorption or emission change the soliton state of the 'source particle'. 
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There is a certain logical problem with the idea that fermions are the 'source' of boson fields, 
for in fact the fermions cannot be separated from the surrounding fields. In particular, since an 
electron always has long-range electromagnetic potentials associated with it, there is no logical 
justification for asserting it to be a 'point particle'. On the contrary, it seems more sensible to 
ascribe all of the properties of the electron to the Dirac wave function from which the potentials 
are derived. 

We now understand that the laws of special relativity are simply a consequence of the wave 
nature of matter and are not evidence of any intrinsic geometric relationship between space and 
time. The apparent constancy of the speed of light with respect to moving observers is due to the 
simple undisputed fact that matter waves travel the same speed as light waves (eigenvalues of the 
Dirac velocity operator have magnitude c).  The negative result of the Michelson-Morley 
experiment did not disprove the notion that the vacuum is a medium for wave propagation. It 
simply confirmed that light and matter waves have the same wave speed. 

The equations of general relativity are also exactly what we would expect to find if matter 
waves refract in an inhomogeneous medium. Instead of saying that space is curved, we can with 
equal validity say that rulers change length in a gravitational field. Since we expect torsion to be 
accompanied by a slight compression, the torsion interpretation of matter offers a simple 
explanation of why the presence of matter would lower the wave speed in its vicinity. One key 
prediction of the torsion hypothesis is that the frequency and wave number vary inversely (the 
fractional changes are equal and opposite for small variations), in agreement with general 
relativity. 

One principle in formulating scientific theories is the application of "Ockham's razor". Any 
unnecessary complexity should be cut out of the theory so that it is as simple as possible. If there 
are two explanations for some phenomenon, the simplest one is generally preferred. Modern 
physicists have made great strides toward describing nature. Einstein's theories of relativity 
correctly predict the refraction of light near massive objects and the influence of gravity on 
planets. The 'Standard Model' seems to offer a mathematical description of particle interactions 
which is consistent with all experimental results. New theories of strings and supersymmetries 
hold great promise for incorporating gravity into the quantum mechanical framework. But there 
is a problem with modern physics. The problem is that while work progressed on complicated 
problems of non-Euclidean geometry and higher-dimensional spaces, simpler problems were left 
unsolved: What is the classical expression for wave angular momentum? What relativity 
principle would result if matter consisted of waves? What is the mathematical expression for 
torsion? How are measurements of matter limited by the fact that the instruments of 
measurement also consist of matter? These basic questions should be answered before delving 
into the complex mathematics of modern physical theories. Given that the physical properties of 
the vacuum are unknown, one can hardly expect to understand matter waves without first being 
able to understand waves in a simple medium with known properties: a uniform, isotropic elastic 
solid. 

Imagine what our interpretation of modern physics would be if Paul Dirac had understood 
torsion waves in 1928. Discovering matter to obey the same equations, with the same dynamical 
operators, he would have had every reason to think that matter consists of torsion waves. Any 
suggestion that matter waves were actually 'probability waves' with no other physical 
interpretation would have been preposterous. Even without such knowledge, Dirac was 
convinced that the Hamiltonian nature of the equations requires the existence of an aether. 
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It is often said that extraordinary claims require extraordinary evidence. No one could 
seriously claim to have an interpretation of quantum mechanics without producing an accurate 
derivation of some basic physical quantities such as the fine structure constant or relative masses 
of particles. At this time no such derivation has been made, and the proposal that matter consists 
of torsion waves must be regarded as unproven. Nonetheless, we have shown that this simple 
model yields mathematical equations which cannot be distinguished from the equations for 
material particles without further detailed analysis. A wide range of 'non-classical' phenomena 
are in fact completely consistent with classical notions of physics. With this logical framework in 
hand we can now hope to truly understand the universe, and not merely describe it. 
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Appendix A:  Angular Eigenfunctions 
 
Isolate the angular derivatives: 
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Separation of the equation requires: 
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where K is a constant matrix.  
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so that each two-component wave function satisfies: 
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The two-component σ  matrices in polar coordinates are: 
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Note that: 
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Expand (A-4): 
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Examine the φ dependence for [ ]Tgf ,=ψ : 
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For an exponential dependence ( )φmf iexp~ , the two-component wave function must have the 
form: 
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Then: 
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Regroup: 
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Substitute: 
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The equation for Φ1 is: 
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In terms of x: 
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which is the Legendre’s associated differential equation. Solutions with arbitrary amplitude a 
bounded in the interval 11 ≤≤− x  may be denoted: 
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although the reader should be wary of differing sign conventions. The normalized spherical 
harmonics are: 
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The equation for Φ2 is obtained by replacing m with –(m+1): 

[ ] [ ] 222

2

222

2
1

sin
1

sin
cos

Φ+−=Φ
+

−Φ
∂

∂
⎥⎦

⎤
⎢⎣

⎡+Φ
∂

∂
αα

θθθ
θ

θ
llm

 (A-20) 
 
Or in terms of x: 
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The solution with arbitrary amplitude b is: 
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The second normalized spherical harmonic is: 
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The wave function may now be written as: 
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The ratio of the two solutions can be determined from the original equations: 
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Comparison with the identity: 
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yields: 
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The normalized angular functions are: 

[ ]

[ ] [ ]
[ ]

( )

[ ]
[ ]

[ ]( )

[ ] ( )
[ ]( ) ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

+

++
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
++

−

+

−++

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−

+

++

=

+

++

φ

φ

φ
π

φ
π

ψ

α

α

α

α

α

α

α
α

α

α

α

αα

α

α

α

α

α

1iexp

iexp1

1iexp
14

1

iexp
4

1

12

12
1

1

11

mP

mPml
N

mP
ml
ml

mP
ml
mlml

Y
l
ml

Y
l
ml

m
l

m
l

m
l

m
l

m
l

m
l

!
!

!
!

 (A-28) 
 
 
These solutions are multiplied by the matrix σr in the bispinor equation.  
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Compare this with the identities: 
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This identity applies to the top element. For the lower element use the identity: 
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l
m
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m
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The result is: 
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In terms of Y’s: 
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Letting l2=l+1 yields: 

[ ]
[ ] ( )

[ ]( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

−+
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

++
−

+

−

=≡ +
+

+

+ φ

φ
ψψσ βα 1iexp

iexp1

12
1
12

1
1

1

1

2

2

2

2

2

2

mP
mPml

N
Y

l
ml

Y
l
ml

m
l

m
l

R
m
l

m
l

r

 (A-36) 

 
These solutions have the property: 
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Letting 1+= lκ , we can write the convection term as: 
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Or, more concisely: 
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Appendix B:  Lorentz Transformations 
 
Let: 
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 (B-1) 

 
A Lorentz boost applied to the wave function has the form: 

( )ψβψ 2exp 1 ασ ⋅=ʹ′  (B-2) 
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Applied to the “probability 4-current”: 
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Notes: 
 
Active Rotation: 

∂ϕ j
URψ r( ) = ∂ϕ j

Rψ R−1r( ) = − iσ j

2
ψ r( )− ∂r

∂ϕ j

⋅∇ψ r( ) = − i
σ j

2
ψ r( )− r×∇ψ r( )  

Passive Rotation: 

∂ϕ j
ψ r( ) = ∂ϕ j

ψ r( ) = i
σ j

2
ψ r( )+ ∂r

∂ϕ j

⋅∇ψ r( ) = i
σ j

2
ψ r( )+ r×∇ψ r( )  
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