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Abstract

Plane waves of spin angular momentum density in an ideal elastic solid are
analyzed using vector and bispinor descriptions. In both classical and quan-
tum physics, spin density is the axial vector field whose curl is equal to twice
the incompressible intrinsic momentum density. The second-order vector wave
equation assumes that temporal changes of spin density in an ideal elastic solid
are attributable to convection, rotation, and torque density. The correspond-
ing first-order wave equation for Dirac bispinors incorporates terms describing
wave propagation, convection, rotations of the medium and rotations of wave
velocity relative to the medium. The two rotation terms are also operators
for rotational kinetic energy and conventional potential energy, respectively.
The potential energy corresponds to half the mass term of the free electron
Dirac equation. Bispinor plane wave solutions are constructed consistent with
the usual dynamical operators of relativistic quantum mechanics. Lagrangian
and Hamiltonian densities are also constructed with each term having a clear
classical physics interpretation. The intrinsic momentum associated with the
Belinfante-Rosenfeld stress tensor is explained. Application to elementary par-
ticles is discussed, including classical physics analogues of the Pauli exclusion
principle, interaction potentials, fermions, bosons, and antimatter.



1 Introduction

Recent experimental and theoretical work has demonstrated that many phenomena
previously thought to be in the exclusive realm of quantum mechanics can actually be
realized via classical physics. Most notably, quantum statistics such as single-particle
diffraction and interference, wave-like probability distributions, tunneling, quantized
orbits, and orbital level splitting have been experimentally demonstrated using sili-
cone oil droplets bouncing on a vibrating tank of fluid [1-7]. These experiments are
classical realizations of pilot-wave theory, or Bohmian mechanics, which was an early
attempt to reconcile the deterministic nature of quantum mechanical equations with
the probabilistic nature of measurements [8-11].

The discovery of a classical interpretation of spin angular momentum evolving
according to a Dirac-type equation further lessens the distinction between classical
and quantum physics [12-14]. The Dirac formalism has been used in a variety of con-
texts to describe classical wave dynamics [15-22]. Despite the probabilistic nature
of measurements, the quantum mechanical Dirac equation is fundamentally a deter-
ministic equation describing the evolution of physical quantities such as spin density,
momentum density, and energy density. These quantities are independent of any
interpretation of the wave function as representing a“particle”.

While it is clear that the Dirac equation has application to classical physics, it is
unclear to what extent classical physics can describe elementary particles and their
interactions. To make progress in this area requires a thorough understanding of the
equations describing spin angular momentum. Given that angular momentum is natu-
rally interpreted as rotational motion of a substance with inertia, a thorough analysis of
the Dirac equation with this interpretation of spin angular momentum is long overdue.

A fundamental principle of analysis is that one should strive to understand simple
systems before attempting to analyze more complex systems. Rather than attempting
to derive results via mathematical proofs or fit mathematical parameters to experi-
mental data, we instead use simple examples of plane waves to demonstrate how terms
in the Dirac equation relate to a specific physical model.

We start by modeling an ideal elastic solid, and assume a simple vector wave
equation for the evolution of spin density. We then factor the vector wave equation
to obtain a first-order Dirac equation for bispinor fields, and construct plane wave
solutions. Calculations of physical quantities utilize operators that are compared with
those of relativistic quantum mechanics. We construct an appropriate Lagrangian and
Hamiltonian, including operators for potential and kinetic energy. Finally, we discuss
possibilities for applying these results to the study of elementary particles and their
interactions.

2 An equation for spin density

2.1 Ideal elastic solid

We consider the case of an isotropic, homogeneous solid with a linear relationship
between infinitesimal stress and strain. The usual expression for potential energy is



(e.g. Ref. [23]):
/Udsr = / @A(v €)%+ ueijeij) d3r (1)

where &(r,t) represents displacement, e;; = (0;§; + 0;&;)/2 is the symmetric strain
tensor, and A and p are the Lamé parameters. This expression has the drawback that
it does not cleanly separate compressible and rotational motion. We can remedy this
as follows:

Expanding the square of the symmetrical strain tensor yields:

eijeij = [(02€2)? + (9,6,)% + (0:€.)7]
+ % (008 + 0y€a)? + (9y€s + 0:26,) + (060 + 0:62)7] - (2)

Add 2(0,8,0,&y+0,&,0.6.+0:€,0,&:) to the first term in square brackets and subtract
it from the second term to obtain:

eijei; = (V- €)°
+ % [(02€y + 0y€a)? + (0y€x + 0:6,)* + (9260 + 02E2)7)
- 2(8x§x8y§y + ayfyazgz + azgzaxgx) . (3)

Since this term occurs as an integrand for the potential energy, we can integrate the
extra terms by parts on each of the two derivatives (neglecting contributions from
total derivatives, which are assumed to integrate to zero) to obtain:

eijei; = (V- €)?
L (0 + 0,607 + (B4 + 0.6, + (0:6s + 0,6.))

This is equivalent to:
1
cijeis = (V€ + 5(V x €2, (5)

The potential energy density may therefore be expressed as:
1 2 1 2
U:§(A+2M)(V‘§) +§N(VX€) . (6)

This form of the potential energy density separates infinitesimal irrotational and
incompressible motion. It is a quadratic function of the first derivatives of displace-
ment. The Lagrangian for infinitesimal incompressible motion is the difference between
kinetic and potential energies:

z- | (;p@s)? — (Y x 5)2) dr. (7)



The Euler-Lagrange equation is the usual equation for infinitesimal shear waves:

a?g:—%vaXg (8)

for which the wave speed is ¢ = 4/ p/p. The incompressible potential energy in equation
(7) was used by MacCullagh in 1837 to derive equation (8) as a description of light
waves [24].

The wave momentum is:

0L
Py = —===0i§; = —p0i&;0:&; - 9)
0¢;
We are interested in incompressible plane wave solutions. Multiplying by the wave
velocity component v; = ce; (where e; is the direction cosine), and applying the
continuity equation 0:§; = —v,0;€; yields:
v P = p(cei0;€;) (cenOi;) = 11(0wé;)(0uE;) (10)

where 0, is the spatial derivative in the direction of wave propagation. Since shear
waves propagate perpendicular to &, this is equivalent to:

v Py = p(V x €)? (11)

which is twice the potential energy density. This result will later be compared with its
Dirac equivalent.

2.2 Spin angular momentum

It is well known that elastic waves in solids have two types of momentum: that of the
medium (pd:€) and that of the wave: p(VE;)0:; (see e.g. Ref. [25]). Clearly there must
also be two types of angular momentum in an elastic solid: “spin” associated with
rotation of the medium, and “orbital” associated with rotation of the wave. However,
spin angular momentum has not been considered to be a classical physics concept
until recently. A brief review is presented here.

Considering only incompressible motion, the Helmholtz decomposition of momen-
tum density p yields the curl of a vector field, e.g. p = %V x s. The vector field
s has been shown to represent angular momentum density corresponding to spin in
relativistic quantum mechanics [12-14]. Hence we refer to s as “spin density”.

This relationship between spin and intrinsic momentum densities is quite general.
Belinfante and Rosenfeld showed that it must be true quantum mechanically [26, 27].
More recently, Bliokh et. al. [28] showed that this relationship holds for water gravity
waves.

Assuming sufficiently rapid fall-off at large distances, the volume integral of spin
density is equal to the volume integral of the first moment of momentum r x p. The
two representations of angular momentum density are related by integration by parts



[14]:

/rx%(sz)d?’r:%/(V(r-s)—r-Vs—s-Vr)dST

= %/(V(ros) — 0i(rs) +s(V-r)—s-Vr)d®r

:/w%. (12)

The total derivatives do not contribute to the last line because they can be converted
into surface integrals that are assumed to vanish.

Unlike the “moment of momentum” definition of angular momentum, spin den-
sity is an intrinsic property defined at each point in space. Coordinate-independent
descriptions of rotational dynamics can actually be traced back to the nineteenth cen-
tury [29]. In 1891 Oliver Heaviside recognized MacCullagh’s force density in equation
(8) as being the curl of a torque density that is proportional to an infinitesimal rotation
angle [30]. However, this idea seems to have been largely forgotten.

The rotational kinetic energy is [13]:

2
1 1 1 :
KR:—/ﬁzd?’r:—/ |:V><s:| d*r
2p 2p 2

1 [s-[Vx(Vxs)]+V-(sx(Vxs))]dr

8p
:%/wsfn (13)

where w = V x u/2 is the instantaneous angular velocity (sometimes confusingly
referred to as “spin” in the literature). In this case the divergence term does not to
contribute to the volume integral because it can be converted into a surface integral
at infinity (and assumed to vanish).

For a Lagrangian density dependent on motion only through kinetic energy, the
spin density (s) is the momentum conjugate to angular velocity:

1) 1 . 1 dw, 08, 1 1
5o /iszj d3r = 5 / (Tszj + wjéTU]i) d3r = 25 + 351 = Si (14)
where integration by parts was used twice to evaluate the second term in the integral.

Spin density can be used to describe rigid rotations as well. See Ref. [14] for an
example.

A popular introductory text on quantum mechanics states that ”these phenomena
involve a quantum degree of freedom called spin, which has no classical counterpart”
[31]. This common claim that spin angular momentum has no classical physics ana-
logue is incorrect. Spin angular momentum is simply the coordinate-independent form
of classical angular momentum.



2.3 Equation of evolution

Assuming incompressible motion with velocity u = (1/(2p))V x s = 9,&, equation (8)
becomes:

1
iat(v xs)+uV x (VxE&=0. (15)
Assuming V - s = 0, the Helmholtz decomposition yields:

Oys+2uV x € = 0. (16)

This equation states that the rate of change of spin density is equal to torque density,
which is proportional to rotation angle (1/2)V x & for infinitesimal displacements.

The next step is to relate the displacement &€ to the spin density s. Define a vector
potential Q such that 9,Q = s. Since the curl of s is proportional to velocity, the curl
of Q must be proportional to displacement:

1

—VxQ=¢€. 17

2,V X Q=¢ (17)
Therefore the linear equation for s is equivalent to:

#Q+ PV xVxQ=0, (18)

where ¢ = u/p. The curl of this equation yields equation (8). The torque density is
T=-c*VxVxQ.

Thus far we have assumed infinitesimal motion. We could instead start from the
nonlinear equation for momentum density:

op+u-Vp=f, (19)

where f is the force density. This equation implies that changes to momentum den-
sity can only result from translation or force. It is the consequence of translational
symmetry of the physical system. Newton’s third law implies that the force may be
regarded as an equal and opposite change of momentum of its source. In an elastic
solid, this means that the change in canonical momentum is equal and opposite to the
change in dynamical momentum. One drawback of equation (19) is that it combines
both incompressible and irrotational contributions to momentum density.

In addition to translational symmetry, the physical system also has rotational
symmetry, implying conservation of angular momentum. This constraint is expressed
by the equation:

ds+u-Vs—wxs=—-cVxVxQ. (20)
The logic of this equation is that changes of spin density can only result from transla-
tion, rotation, or torque. Since total angular momentum is conserved, torque density
is equivalent to minus the rate of change of orbital angular momentum density.

Since spin density is a fundamental physical quantity, it is reasonable to assume
that it satisfies a single equation of evolution everywhere in space and time. Eq. 20 is
a sensible candidate for such an “equation of everything.”



Eq. 20 can be put in Lorentz-covariant form using the four-position z = (ct, z,y, 2)
and metric g,, = ¢"¥ = diag(1l,—1,—1,—1). We assume that Q% = (0, Qz, Qy, Q:)
and V-Q = 0 in the “rest” or “lab” frame of reference. Define the Lorentz four-velocity
as U® = (c,0,0,0) in the “rest” frame. The four-displacement is £ = €*#X°93Q,,Us.
This can be combined with the four-vector Q% to form an antisymmetric tensor Q¥ =
(1/e)(U*QY — Q*UY). Then the four-spin density is s® = 8#(2“"‘, the four-momentum
density is p® = pu® = (1/2)e*$x%94s,Us, and the four-angular velocity is w® =
(1/4p)e*PX305p, Us. The rotation rate matrix is we, = €*PX3 g5 U, ws. The Lorentz-
covariant equation is then:

0"9,Q% + ut 9, s™ — w st =0. (21)

The velocity of the medium u® should not be confused with the Lorentz four-
velocity (U®), which only depends on the relative motion of reference frames, or
with wave velocity v* = (¢, vz, vy, v;), which quantifies wave propagation rather than
motion of the medium.

The Lorentz transformations relate measurements in different reference frames,
and are applicable whenever measurements are made exclusively with waves having a
single characteristic speed [32]. Since absolute motion cannot be measured in this way,
each inertial observer naturally treats their own reference frame as the‘“rest” frame.
Although the waves propagate in Galilean space-time, the measurements made with
these waves form a Minkowski space. Lorentz transformations are applicable to light
and matter because both are described by Lorentz-covariant wave equations with the
same characteristic speed (c¢), even though matter waves have group velocities with
magnitudes less than c¢. MacCullagh [24] and Maxwell [33] similarly assumed a Galilean
physical space-time in deriving relativistic equations for light and electromagnetism,
respectively.

Although equation (20) may be sensible, an alternative would be:

8ts+%V><(s><u):—62V><V><Q. (22)

This equation differs from equation (20) only by factors proportional to V - u, V - s,
and V(u -s). Incompressibility requires V - u = 0. We can choose to make V-s =0
everywhere since only the curl of spin density has physical significance. The equation
of evolution (22) then guarantees that V - s does not change over time.

For simple plane waves, there is no difference between equations (20) and (22).
The rest of this paper only deals with equation (20).

2.4 Dirac equation

To understand the Dirac equation, consider equation (18), which is a second-order
differential equation for the vector field Q(r, t). There are often benefits in converting
a second-order equation to a set of first-order equations. We will do this by following
Refs. [12] and [14], starting with one-dimensional waves and then generalizing to three
dimensions.



2.4.1 One-dimensional waves

Consider a one-component wave propagating in one-dimension with amplitude of
Q(z,t). If the wave equation is

Q- 2Q =0, (23)
the derivative operators can be factored to yield:
(0 + ¢0,)(0r — ¢0,)Q = 0. (24)
The general solution consists of backward (B) and forward (F') propagating waves:

Q=Qp(ct+2)+Qp(ct—=2). (25)

The two directions of wave propagation are clearly independent states, and they are
separated in space by a 180° rotation. This property is the fundamental characteristic
of spin one-half states. Generalization to three dimensional space therefore involves
spinor or bispinor wave functions.

The forward and backward waves satisfy the equations:

6tQB = 8ZQB )
atQF = _azQF . (26)

Defining Q = 8,Q, we can write the wave equation as a first-order matrix equation:

o {QB] o, ( Lo ) {QB] 0. (27)
QF 0 -1/ [QF
The matrix simply transforms temporal derivatives to spatial derivatives as in equation
(26). Applying this transformation and summing the equations for Qp and Qp then
recovers the original wave equation.

We have thus achieved the goal of converting a one-dimensional second-order wave
equation into a first-order matrix equation. Although generalization to three dimen-
sional vector waves involves some mathematical complexity, it does not involve any
fundamentally new concepts. A clue can be found in the fact that the matrix for spatial
derivatives is the Pauli matrix o, .

First, note that the procedure above specifies independent components with pos-
itive and negative wave velocity, and uses a diagonal matrix to relate spatial and
temporal derivatives. We can apply a similar technique to separate positive and
negative values of the wave time derivatives. Letting @ and Qg represent the z-
components of vectors, separate each component of the wave into positive and negative
contributions (QB = QB+ — Qp_ and Qp = QF+ — QF_) so that each of the four



wave components (QB+, QB,, QFJF,.QF,) is positive-definite. With these definitions,
we can use a matrix expression for Q:

21729 T 1/2
Q{% 1000 Q1j2
1 |1QE- 0-1 0 O 1 7
= = ¢ == » 2
31/2 0 0 0-1 1/2
B— B—

where o, is the 4 x 4 Dirac matrix for the z-component of spin density, and the
four-component column vector is called a (one-dimensional) Dirac bispinor. In one
dimension, the significance of simultaneous positive and negative components is
unclear. We will see that in three dimensions, simultaneous positive and negative
components for one direction can (but doesn’t necessarily) describe polarization in a
different direction.

The spatial derivative is now given by:

129 7T 21/2
QI;Q 100 0 Q?;E
11Qp” 010 0 z 1
c0.Q 2 ~f/2 00-1 0 ‘f/Q 251/}7153'(/}- (29)
Qpy Ft
51/2 00 0 -1 51/2
B— B—

The matrix —33 is the Dirac matrix for chirality (equal to the matrix 4° in the
standard chiral representation). If the amplitude (Q) represents rotation angle, then
positive and negative chirality (—0,a) are analogous to right- and left-handed threads
on a screw (denoted by R and L, respectively). The chirality projection operators are:

ST+ 0=y,

1
5(1 - B =¢r. (30)
2.4.2 Wave velocity and Lorentz boosts
Wave velocity (v) is obtained by combining the two matrices used above:
1/2
-100 0 Qlj :
. 0 100 Fo| _ a3
v =c 001 0 ouz| = B0, . (31)
F+
0 00-1 '118/2

We can define a “weighted wave velocity” from the difference between forward and
backward amplitudes divided by the sum of forward and backward amplitudes:

\QF+| +1Qr-| - |Qp+| — QB |
\QF+| +1Qr | +1Qp.| + Q5]

YlefPoy
i

(32)



The magnitude |Q| and rapidity « can be suitably chosen to satisfy:

|Qr+| +Qr-| = |Q|exp(a);
QB+ +1Qp-| = |Q|exp(—a), (33)

so that the weighted wave velocity becomes:

b \QI exp(a) — IQI exp(—a)
|Qlexp(a) + |Q| exp(—a)

= ¢ tanh(a) . (34)

A Lorentz boost 1)’ = exp (—f30.a1 )1 changes the weighted wave velocity (v — v')
by altering the relative strength of forward and backward waves:

_ (©0(=B0.01/2)0)! (0. (exp(—H0-00/2)0)
(exp(—p30.a1/2)Y)t (exp(—f30.a1/2)¢)
_. |Q| exp(a + a1) — |Q| exp(
(Gl oxp(a + ax) + O] exp(—a — )

—a—aq)

= c¢ tanh(a 4+ ay). (35)

Thus, the concept of rapidity emerges naturally from the separation of forward
and backward waves propagating in Galilean space-time.

2.4.3 Three-dimensional vector waves

Combining equations (28) and (29), the one-dimensional linear wave equation may be
written in the form:

O[T o) — . [T 8] = 2(87Q — *2Q) = 0. (36)
Expanding the derivatives yields:
o000 — T 20,9 + adjoint = 0. (37)
Factoring ¢T o, then yields:
Ylo. (8¢ — cf30.0.1)) + adjoint = 0. (38)

This one-dimensional Dirac equation is itself useful for teaching purposes [34, 35].
However, its equivalence with the one-dimensional second-order wave equation has not
been widely recognized. Next we will show how to generalize the first-order equation
to three spatial dimensions.

Generalization to three dimensions is based on geometric algebra. This algebra
derives from the fact that there are two independent ways to construct a product of
3-vectors: scalar product and cross product. These two products measure the degree
to which two vectors are parallel (scalar product) or perpendicular (cross product).
The cross product additionally defines the plane of the two vectors, and is therefore

10



sometimes called the “directed area product”. These two products can be combined
into a single product by making the cross product imaginary [36]:

ab=a-b+ilaxb). (39)
The unit imaginary defines an oriented volume:
xyz =(ixxy) z=1i; (40)
zyx =(izxy) -x=-i.

Generalization of the Dirac equation to three dimensions consists of finding spin
and velocity matrices with the same algebra as unit vectors:

j?l.fij = 51’]’ + i€ kT - (41)
The Pauli spin matrices o = (of ,05 ,of’) have this property. Arbitrary vector

components a; can be computed from a 2-component complex wave function n as
follows:

0 1
0 —i
1 0
azznTUfn=nT<O_1>n- (42)

The Pauli matrices may in general represent axial or polar vectors, but they are
most commonly associated with spin density, which is an axial vector. The fourth
independent matrix in this algebra is the identity matrix (). At each point, the
direction of the vector nfe¥’n can be rotated by an arbitrary angle ¢ about an axis
é, using operations of the form (with ¢ = @é,):

Ro(nfa’n) = nf exp (i0” - ¢/2) a" exp (—io” - ¢/2) . (43)

For example, exp (—iow/4) ol exp (icl'w/4) = 0. So to find 1)’ such that n’TJfIDn’ =
ntaPn, the rotated wave function must be 7' = exp (—iocfw/4)n. This transformation
rotates the wave polarization direction from X to y.
Rotations of the field (as opposed to a single point) would also require r — R;lr.
Thus
Ry (n(r,8)) = exp (~io” - /2) n(R;'r,1). (44)
The Dirac wave functions specify not a single vector, but spatial and temporal
derivatives of a vector field. Forward and backward waves along an arbitrary axis can
be described by replacing the Pauli matrices with the corresponding 4 x 4 Dirac spin

11



matrices and replacing the two-component spinor 1 with a 4-component bispinor .
In terms of the Pauli matrices, the Dirac spin matrices o = (04,0, 0;) are:

P P P
oy, O o, 0 o, O
Uz:(o 0_5)) Uy:(go.?f)7 Jz:<0 0_5)7 (45)

where 0 is the 2 x 2 null matrix.

Just as there are three Pauli matrices indicating different directions of wave polar-
ization, there are also three orthogonal matrices associated with spatial derivatives
(and also related to wave velocity). We will denote these as:

01 0 —iI 10
51—(10), 52—(110), /33—(0_1), (46)

where I is the 2 x 2 identity matrix. Compared with the chiral notation of relativistic
quantum mechanics, 32 = —® and ' = 4Y. Equation (31) implies that the matrix
— B30 tabulates wave velocity. Since 8'3% = i3, rotations in S-space are performed
similarly to rotations in o-space. Although the 8 matrices are clearly associated with
spatial derivatives, they are not explicitly associated with the directional unit vectors
that define the spin direction.

The one-dimensional wave equation (36) has the bispinor form:

{1/1T026‘t¢ — C¢T53321/1} + Transpose = 0. (47)
We can separate a common factor of ¢¥7 o
o, {atzp — 65302821/1} + Transpose = 0. (48)

For arbitrary vector components and derivatives, the matrices and spatial derivatives
are generalized to arbitrary directions by allowing for three indices (i = («,y, z) and
j = (x,y,2)), and the bispinor wave functions are allowed to be complex:

Ylo; {o — cﬁgajajw} + adjoint = 0. (49)

This is the first-order wave equation for vector waves in three dimensions. The wave
function of a free electron satisfies the same equation. Start with the Dirac equation
for a free electron:

Op — cB%0;0; +1QB"p =0 (50)
with Q = m.c?/h. Multiplication by ¢o; and addition of the adjoint yields equation
(49).

Expanding the spatial derivative term in equation (49) yields the 3-D generalization
of the wave equation (36):

0, [Vlop] — eV [W18%¢] +ic{[VyT] x fPoy +4Tf% x Vy} = 0. (51)

12



The terms correspond, in order, to twice those in the vector wave equation:
HQ—-cV(V-Q) +AVx(VxQ)=0. (52)

Thus equation (51) is the result we have been seeking. We have rewritten the second-
order vector wave equation as a first order equation involving Dirac bispinors. The
validity of this correspondence, which we will confirm with examples, demonstrates
that the Dirac equation of relativistic quantum mechanics may be regarded as a first-
order representation of an ordinary second-order vector wave equation.

Furthermore, the evolution of the spin density vector field of a free electron is
identical to the linear evolution of spin density in an elastic solid. This simple fact
justifies the study of an elastic solid as a model of the vacuum.

Equation (52) yields the following physical correspondences [12]:

s=0.Q = [vou]; (53a)

v-Q = 3 [p16%); (53b)

CAY XV % Q) = % {[o'] x Pob vl o x T} (53¢)
0= 2V A{[Vel] x FPou +uliso x Vu) . (53)

These identifications provide seven independent constraints on the eight free
parameters of the complex Dirac bispinor: three for the first, one for the second, two for
the third (since a curl has only two independent components), and one for the fourth.
There is also an arbitrary overall phase factor. The last equation simply states that
the divergence of a curl is zero. This condition is necessary for consistency. Velocity
and angular velocity are:

u :$sz:iVx&gQ=ﬁVX WTO'w] ; (54a)
w:%qu:%pVxVx@tQ:$VxVx[d)TGw]- (54b)

The classical and quantum mechanical expressions for spin angular momentum
differ by a factor of 4. This is of course a mere convention. There is no question that
the quantum mechanical single-particle Dirac equation describes the deterministic
evolution of spin density.

According to the above analysis, the first-order Dirac equation is a kind of fac-
torization (or square root) of a second-order vector wave equation. Others have made
different factorizations of wave equations using multivariate 4-vectors, quaternions, or
octonions [37-40].

The first-order wave equation (49) can be reduced to:

O — e - Vip +ixyh =0, (55)

13



where y is any operator with the property
Re {¢fojixy} =0. (56)

The equation for a free electron is obtained by the choosing xy = Q8! = Q4" with
Q = mec?/h. This term represents rotation of wave velocity [18], and has also been
interpreted as describing circular particle motion [41].

Multiplying equation (55) by ¥ and adding the adjoint yields a conservation law
with density ¢y and current —yfcs3a:

Oy (i) = V- (¥TepPoy) =0. (57)

In quantum mechanics this equation is regarded as a conservation law for probability
density, but in both classical and quantum mechanics it is part of the description of
the evolution of spin density.

The four-vector for spin density is (—T 83, 9fo?p). Since the time component
represents a divergence in equation (53b), its volume integral can be converted to a
surface integral at infinity. Assuming that the wave amplitude falls to zero sufficiently
rapidly, this surface integral is zero. Thus, the time component of the total spin of
elementary particles can be taken as zero in the rest frame. The stronger assumption
that V - Q = 0 everywhere in the rest frame may also be valid (as assumed earlier
when constructing a Lorentz-covariant equation).

3 Spin density plane waves

We present bispinor descriptions of plane wave solutions to the vector wave equation.
These represent physical plane waves with oscillating spin density, unlike quantum
mechanical so-called “plane waves” that merely have an oscillating phase factor. The
nonlinear vector terms are zero for plane waves. However, we can use these solutions
to determine appropriate nonlinear terms in the bispinor wave equation.

3.1 Linear plane wave solutions

We start with a description of a longitudinal wave:

0
;o JwQo | —1+cos (wt — kz)
Vi, = 2 1+ cos(wt —kz) |~ (58)
0
for which the only nonzero spin density component is s, = (1/2)¢fo.yp =

wQq cos (wt — kz). The wave velocity operator is —c3%0.2 as in equation (32). The
divergence is given by (1/2¢)yt 33 = —kQq cos (wt — kz), where k = w/c. This wave
function cannot describe spin density because it has zero curl. Also, the Dirac represen-
tation is not unique. This wave function has both positive and negative contributions
to the scalar wave amplitude at each point, but it does not have discontinuities that

14



would result from strict separation of positive and negative values. This wave function
also has all real-valued Dirac components, and these remain real-valued under velocity
rotation in the z-z plane.

We can rotate wave velocity by using the § matrices, with ! initially aligned with
% and $3? initially aligned with y. Since, according to equation (29), the matrix 43 is
aligned with the z-axis, the 8 matrices form a right-handed coordinate system. Thus,
spin-independent wave velocity rotation of —m/2 about the z-axis is accomplished by:

i(1 4 cos (wt — ky))
VwQo | —1+ cos (wt — ky)
2 1+ cos (wt — ky) ’
i(—1 4 cos (wt — ky))

V0, = exp (B /)05, (2 = y,t) = (59)

where the argument z — y indicates the effect of rotating the coordinates about the
negative z-axis. The spin density for this wave function is s, = w@Qq cos (wt — ky).
Interestingly, the quantity —cyfB30,1) = —cwQo sin (wt — k:y)2 is not equal to c|y)|?
as expected for a velocity operator (it even has the wrong sign). As we will see
more clearly below, this behavior arises from the fact that some of the terms in
the wave function have zero gradient. An alternative wave velocity (or wave flow)
calculation, —cyf 520,49y, does have magnitude of c|i|2. This is expected since the
—7/2 rotation about B! moves 3% to 82. The spatial derivative of Q. is given by
9,Q> = (1/2c)yT % = —kQo cos (wt — ky). This is proportional to the displacement:
€ =(1/2p)0,Q.%.

Similarly, spin-independent rotation of wave velocity by 7/2 about the y-axis is
given by:

—1 — cos (wt — kx)
VwQo | =1+ cos (wt — kx)

/ _ 02 / —
Vs, v, = exp (—if 77/4)1#5271,2 (z = x,t) 5 1+ cos (wt — ka) | (60)
—1 + cos (wt — kx)
which yields spin density of s, = wQqcos(wt — kz). The wave velocity operator

—cf30,% again does not evaluate to c|i)|?, but the alternative wave velocity operator
—cflo.% does (the rotation about 32 moves 3% to 3'). The spatial derivative of Q.
is given by 9,Q. = (1/2¢)y!B% = —kQq cos (wt — kx). This is proportional to the
displacement: &€ = —(1/2p)0.Q.y.

Each of the above wave functions satisfies the linear Dirac equation:

8ﬂ/J - 6530']'(%4/) =0. (61)

To obtain a spin density aligned with the x-axis and propagating in the z-direction,
we start with the longitudinal wave 1/ rotate the velocity by —m/2 around the

Sz,Vz)

y-axis (from 2 to —%) using (32, then rotate the entire wave function by /2 around
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the y-axis using oy:

1
UL, = e (ioym /) exp (80 (1) = 220 |78 (o)
1

which yields spin density of s, = wQg cos (wt — kz). With velocity aligned with the
z-axis so that the wave velocity matrix is diagonal, we now see why the wave velocity
operator —c/3%c, does not evaluate to c|th|?: the first and fourth wave function compo-
nents contribute to —ci)330,1) but not to the wave propagation term —t335,0,1.
Thus, —cB330 is a valid velocity operator when operating on the gradient of the wave
function, but not when operating independent of the gradient operator. The alterna-
tive wave velocity operator cf1o,2z does evaluate to c|1)|?z. The o matrix associated
with the alternative wave velocity operator is the matrix of the spin direction (in this
case o, for spin density polarization along the z-axis).

This wave function (¢ = v, ) yields the following terms in the second-order
wave equation:

s=0,Q = % [Ty = (wQo cos (wt — kz),0,0); (63a)
V- Q= [v5%] =0; (630)

(VxVxQ)= i {[Vy'] x BPoy — ¢ 8% x Vi }
= (K*Qq sin (wt — kz),0,0). (63c)

Since the wave velocity was rotated about 32, the displacement &€ is now computed
from the spatial derivative operator using the matrix —3! instead of 53:

€ = (1/20)0.Qu = —(1/4ep)tT 8% = —(kQo/2p) cos (wt — kz).  (64)
Given the transverse wave function ¢, , we can rotate the transverse wave veloc-
ity direction using the S matrix. Keeping spin density along the x-axis, wave velocity
in the y-direction is obtained by:

1+icos (wt — ky)

VwQo | i+ cos(wt — ky)
2 i+ cos(wt—ky) |’

1+icos (wt — ky)

U0, (Y1) = exp (BT /4) s, 0. (2 = 4, t) = (65)

for which the spin density is s, = wQqcos (wt — ky). Thus, the S matrix associated
with displacements is also used for velocity rotations about the spin axis. Positive val-
ues of —(1/4cp)pTBlep = —(kqo/2p) cos (wt — ky) now represents displacement along
the —z-axis since the rotation z — y moved the B! direction from y to —z. Thus
& = —(1/2p)0y Qo = (kqo/2p) cos (wt — ky).
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As shown in the sample wave functions above, we can always choose a representa-
tion in which ' is the operator for the transverse spatial derivative of Q - §, and the
same matrix is used for rotations of wave velocity about the spin axis. Just as rotation
about the spin axis preserves spin but rotates the perpendicular axes, rotation about
Bt preserves the value of ¥ 51, while 1f3%¢ and 1t 334 both remain zero. Rotation
of B3 about ' changes the direction of wave velocity, as represented by —c3%o.

3.2 Nonlinear plane wave solutions

The preceding analysis is incomplete because the wave functions described above do
not include any effect of the motion of the medium. To see what is missing, rewrite
equation (20) in terms of the bispinor wave function:

0= '(/JTO'Z‘ (&fw - Cﬁ3o'jaj¢ +u;0;9 + ;wjajw) + c.c. (66)

where“c.c.” stands for “complex conjugate.” The third term in parentheses is zero, but
the last term describes the effect of rotation of the solid medium on the wave function.
If we were to describe the wave function evolution independent of the multiplier z/}Jij,
we would set the expression in parentheses equal to zero. The simple wave function in
equation (62) would not satisfy that equation because it omits the rotation effect. Fur-
thermore, the expression in parentheses is also incomplete because the wave function
does not completely rotate with the medium. Instead, as the medium rotates, the wave
velocity remains constant. In other words, as the medium rotates about the spin axis,
the wave velocity rotates back relative to the medium in order to remain unchanged.
For plane waves, this rotation is about the spin axis and utilizes the matrix '

0 = 8 — cBP0;0, + u 050 + %wlﬂlw i %wjajw (67)

where w1, represents the rotation rate of wave velocity about the spin axis. The relative
alignment of wave variables is shown in Figure 1.

Fig. 1 Wave variables at their maximal positions for a plane wave propagating toward the right
with speed v. When displacement & is upward, the force density f is downward, the angular velocity
w of the medium is up out of the page, and the wave velocity rotation rate w relative to the medium
is opposite to w.
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Equation (67) attributes temporal changes in the wave function to propagation,
convection, rotation of wave velocity, and rotation of the medium. Additional terms
may be necessary in some circumstances (e.g. interactions with other waves), but
equation (67) is sufficient for plane waves.

The conservation law of equation (57) is now modified to include convection in
addition to wave propagation:

Oy (W) +u- V(Ty) — V- (o) =0. (68)

For plane waves the additional convection term is zero.

Although the two rotation terms in equation (67) cancel for plane waves, we
modify the wave function in equation (62) so that each term is consistent with its
interpretation in the vector wave equation:

1
2
[wQq | cos (wt — kz) — %90 sin (wt — k2)
¢sm,vz = TO . kfng . (69)

cos (wt — kz) —1i 75o sin (wt — kz)
1

This wave function still yields s, = wQp cos (wt — kz) and satisfies the full nonlinear
Dirac equation in equation (67).

3.2.1 Energy operators

Now consider the physical interpretation of the terms in equation (67). The nonlinear
terms represent rotations of wave velocity and of the medium as a whole. But they
are also related to energy. Multiplying equation (67) by i)' /2 and adding the complex
conjugate yields, with some rearranging:

Re(¥1i9,9) = Re(e!f30;i0;40) — ujRe(yi0;40) + %wlw/ﬁlw + %ijajw .(70)

The last term in this equation is w;s;, which is twice the rotational kinetic energy.
The next to last term is proportional to the displacement & = —(1/4cp)e B4 as in
equation (64). Using V - & = 0, the corresponding component of force density is equal
to:

c
f1=pV2E = —ZVZ [TBy] . (71)
For plane waves, the force density is proportional to displacement, so that as

displacement increases from zero, the average force is half of the final force. Therefore,
the conventional potential energy is

e Yo s Y 2iutaiyy . ot sl
U= [tear——jt6- TV WB) 8. (72)

Comparing with equation (70), it appears that w; is proportional to force and
the next-to-last term in equation (70) is proportional to conventional potential energy
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density. To keep the wave velocity constant, its spin-independent rotation rate must
be the opposite of the medium rotation rate:

Wk2QO
4p

W] = —Wy =

cos (wh — kz) = 8ipv2(w51¢) . (73)

This is similar to the expression for angular velocity in equation (54b), with —p3?
replacing o matrices. With this value of w;, the next-to-last term in equation (70) is
equal to minus two times the conventional potential energy density, which cancels the
the last term in equation (70) (since the rotational kinetic energy is in quadrature to
the conventional kinetic energy: i.e. sin® < cos?).

The terms in equation (70) correspond to different energies as follows:

Re(4110:1)) = Re(cy!B30,i0;9) — u;Re(1p110;40) + %wlwﬂlw + %qu/ﬂajw (74a)
& = cv-P + 0 + f-¢ + w-s, (74b)

where c¢v-P is shorthand for 1v,,P,,1 with wave velocity operator v,, = —c%a and
wave momentum operator P,, = —iV. The total energy density is & = w?k2Q3/(8p),
which is also the value of ¢V - P.

Rotational potential energy density can be defined as Ugp = P - ¢v — U. The
rotational potential energy density (Ug) and rotational kinetic energy density (Kg)
are in quadrature to their usual expressions. The term ¢v - P represents the product of
wave momentum density and wave velocity, which was shown in equation (11) to be
twice the potential energy for the vector representation. For the bispinor representation
of plane waves, cv - P is equal to the total energy, which has the same integrated value
as twice the potential energy.

The different energy expressions are therefore:

1 1.1

Kn = ywos= 3@V x ¥ xulov) - Julow, (752)

Un = @ Po+ 56 € = Re(we8’ji0j) + 5 V(g-018'0) - 50160 (75b)

For plane waves we also have £& = Re(1/i0;4), but that result is only valid due to
cancelation of the medium rotation and wave rotation terms.

In comparison, the equation of evolution for a free electron corresponding to
equation (74) is:

hRe(¥11049)) = hRe(cy' B30,i0;10) + mec?i Bl (76)
E = hev - P + mect. (77)

An electron at rest is commonly presumed to have no internal wave structure,
resulting in ¢v - P = 0. The mass term corresponds in equation (74) to £2U. With
equipartition between potential and kinetic energy, the potential energy density inte-
grates to half of the total energy. Thus, the electron equation approximates the
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elastic solid equation by ignoring kinetic energy and internal wave structure, and by
substituting mass for twice the potential energy.

Even for an electron, the mass term clearly describes rotation of wave velocity.
However, standard theories of the electron offer no insight as to why such velocity
rotation should be associated with energy. Hestenes interpreted the wave velocity as
particle velocity and proposed that the rest energy is kinetic in origin [41]. The anal-
ysis of spin density plane waves instead provides a clear physical process by which
quantum mechanical rest mass is associated with potential energy. However, a com-
plete description of particle-like waves in an elastic solid would require an internal
wave structure with both kinetic and potential energies.

3.2.2 Lagrangian and Hamiltonian

Having a first-order equation of evolution enables the use of variational methods.
Interpreting equation (67) as an Euler-Lagrange equation requires distinction between
terms containing one factor each of 1) and 1! or their derivatives, and terms containing
two such factors. Just as spin density had to be regarded as functionally dependent
on angular velocity in equation (14), angular velocity (w or @) should be regarded as
functionally dependent on the wave function.

Treating ¢ and ! as independent variables, we construct a Lagrangian density
% = 0 so that terms linear in v and its derivatives have coeflicient of one as in
equation (67), and the two rotation terms are cut in half:

&L = Re(¥'i0p) — e B3a10;4 + ¢Tuyid ) — iwlwﬁlw — iwjuﬁajw. (78)

The Euler-Lagrange equation is:

0Z 0L 0L

% own T a0wn or (79)

Application to equation (78) yields equation (67). The rotation terms are evaluated
using integration by parts. For example:

- / V2 (o) (o) dr = / 8 (Vo) 0u( o) (30)

The conjugate momentum to the field 1 is py:

0L i

_ — —aT

and similarly for p,+. The real-valued Hamiltonian is

A = 5 (et Boyi0e — oyt Pogp} + o 60 + quidto. (32)
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This is equal to the total energy as demonstrated in equation (75). With the
nonlinear rotational terms in the Hamiltonian, we must consider the possibility that
i0gp # Hv. However, the equality holds for plane waves due to cancellation of
rotational terms.

3.2.3 Dynamical quantities

The Hamiltonian is a special case (TJ) of the stress-energy (or energy-momentum)
tensor [42]:
0L L 0Z
90,97 0[0u]
In the Lagrangian, the kinetic energy term is negative. Therefore, the conjugate
momenta computed from the Lagrangian should include a minus sign. The dynamical
(or wave) momentum density P; is

TH = 9,07

b — L8 (83)

0% 0L
Pi=-T=— o — dih = —Re {Yliop} . 84
S o Y T g Y T TRelion e
The wave angular momentum density is likewise
0L 0% i 0r
L= —g. _ —  Refiht — Re( ot %ig ) — s .
Ot a7 900 Opt) Re(iv'0,) Re(2w 880811/)) Re{r X 1V¢}

(85)
This expression assumes a particular origin for the axis of rotation of the angle ¢, in
contrast to the coordinate-independent spin angular momentum. One could attempt
to express orbital angular momentum density as the field whose curl is twice the wave
momentum density, but we will not pursue that here.
For densities of total momentum (Pr) and angular momentum (J), we must
combine the wave and medium contributions [12]:

Pr =P +p=Re{yliVe} + 5V x o1 70 (86)

J=L+8=—Re{rxylivy} +w%¢ . (87)

The expression for total momentum density can also be derived from the symmetrized
Belinfante-Rosenfeld stress-energy tensor [26, 27, 43]. Rosenfeld commented that, “Of
course, this separation of the total moment of momentum into two terms ... has a
direct physical meaning only for physical agencies that are endowed with inertia so
that one could attach a system of reference that is at rest with respect to it” [27].

3.2.4 Intrinsic momentum

The total angular momentum operator is well-understood as a generator of rotations,
with L accounting for rotation of the position argument and s accounting for rotation
of the basis states defining the direction of spin density. Since momentum is the gen-
erator of translations, the existence of intrinsic momentum implies that translations
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affect not just the arguments of the wave function but also the bispinor basis states.
Applying the intrinsic-momentum transformation ¢ — ¢ + (i/4)ec 0.1 to the wave
function in equation (69) represents an infinitesimal displacement in the y-direction
and yields the wave function:

— (i/4)e (k sin (wt — kz) + kSQO cos (wt — kz))
_ [wQo cos (wt — kz) — ik QO sin (wt — kz)
Voews = 2 cos (wt — kz) — QO sin (wt — kz) . (88)

— (i/4)e (k; sin (wt — k;z) P2 QO cos (wt — k;z))

This wave function yields the same spin density as the original wave function except
for an additional constant term. Thus, it still correctly describes the motion of the
medium. However, the “translated” wave function does not have the same calculated
energies, and does not satisfy the same equation of evolution. The situation is similar
to analysis of a mass on a spring with the origin shifted away from the equilibrium
position. The spurious displacement adds a term to the Hamiltonian proportional to
the offset times the force, and the same is true when adding a constant translation
along the displacement axis of a plane wave. The first-order change in the calculated
Hamiltonian is:

ekw?Qq

AH = —(1/2)ef = —(1/2)end?e = ==

cos (wt — kz). (89)
Thus the displacement associated with the conjugate momentum represents a shift of
coordinates away from equilibrium along the displacement axis.

Translation along the wave propagation direction simply shifts the coordinate (z),
otherwise preserving the Hamiltonian.

Regarded as a function of complementary variables ¢ and p, Hamilton’s equations
are:

OH OH
oq=—, Op=——F—. 90
=, O 34 (90)
The velocity associated with the wave momentum is thus:
—iTeB3a - T(—i
v OH _ Re(—iyTef%a - Vi) Re(w'(—iV)y) —(0,0,¢). (91)

opP (Re(yT(=iV)y))?

The velocity associated with the intrinsic momentum is found by integrating the
rotational kinetic energy term by parts to convert (1/2)w -s to p?/2p:

OH p 1
=—— == _—_Vxylay = (0,
TR, Ploy = (

cC;(;kQ sin (wt — kz),0) . (92)

This is of course the velocity of the medium caused by the wave.
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These two velocities can be used to compute the slope of the displacement from
equilibrium as a function of z:

2
%:—%:—%sin(wt—kz). (93)

Thus we have seen that analysis of classical spin density of elastic waves offers
many insights into the physical interpretation of the Dirac equation, including an
understanding of the intrinsic momentum required by the Belinfante-Rosenfeld stress-
energy tensor.

4 Discussion

We have analyzed a nonlinear Dirac equation based on the simple model of an ideal
elastic solid. With proper normalization, momentum and angular momentum densities
are computed from the same operators in both classical and quantum physics. Others
have also found similarities between quantum mechanics and waves in an elastic solid
[12-14, 21, 44-48]. Each of the variables in the Dirac equation has a clear physical
interpretation. In particular, spin angular momentum of elementary particles may be
regarded as the angular momentum of the vacuum or, equivalently, the “aether”.

While it is unclear to what extent classical physics can describe quantum mechan-
ics, it is sensible to suppose that spin density should be described by a single equation
valid throughout all space. According to this hypothesis, the Standard Model is a
decomposition of spin density waves into so-called “particles”. While this hypothe-
sis may be contested, it is incorrect to say that the aether is undetectable. It has
been detected by its intrinsic angular momentum, consistent with Robert Laughlin’s
statement that, “Relativity actually says nothing about the existence or nonexistence
of matter pervading the universe, only that any such matter must have relativistic
symmetry. It turns out that such matter exists” [49].

The equation of evolution of spin density is nonlinear. Nonlinearity is a possible
reason for quantized amplitudes, since multiplying a solution by a constant factor
would not generally yield another solution. Many researchers have attempted to quan-
tize the Dirac equation by adding nonlinear terms [50-59]. Particle-like nonlinear wave
solutions are sometimes called “breathers” or “solitons”. The sine-Gordon equation
illustrates particle-like behavior in one dimension, and three-dimensional analogues
have also been studied [60-63].

It is possible that classical wave interactions might explain the Pauli exclusion prin-
ciple and interaction potentials. In short, adding wave functions of two “independent”
particles results in addition of their magnitudes plus unwanted interference terms:

(ha +¥p) (Y +vB) = Via + Vhs + Vs + ¥hva. (94)

The conservation law expressed by equation (57) implies that the combined magnitude
of the two particles should be conserved. Phase shifts can be introduced to cancel the
interference terms without changing the magnitude of each particle. The cancellation
of interference terms is equivalent to anticommutation of the wave functions, which is
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a mathematical statement of the exclusion principle. Derivatives of the phase shifts
may be interpreted as interaction potentials [12].

For a phase shift of the form § = (m¢ — wt) with integer m, a magnetic vector
potential A = (hic/e)V4§ would have quantized magnetic flux (§ (A - df) = m(hc/e))
since the phase can only change by multiples of 2rm when traversing a loop. For
m = 1/2 this is equal to the magnetic flux quantum of superconductivity (although in
that case the electrons are in pairs with m = 1 and charge of 2e). Others have similarly
identified the electromagnetic vector potential A as the gradient of a multivalued
field[64, 65].

For interacting particle-like waves, the magnitude of phase shifts must decrease
with increasing distance between the particles. Jehle showed that with a 1/r radial
dependence of the phase shift (interpreted as a distribution of rotating magnetic flux
loops) scaled to yield the electron magnetic field |B,| = (uo/2mr®)up in the z = 0
plane with m = 1 and angular frequency w = 2m.c?/h, the rotating phase shift gives
rise to the electron Coulomb potential [64]. Here up = (eh/2m.) is the Bohr magneton
in SI units. The same result could be obtained with m = 1/2 and w = m.c?/h. Jehle
also extended the model of quantized flux “loopforms” to other particles [66].

The elastic solid model might also produce analogues of matter and antimat-
ter. Suppose that elementary particles have spin density vector components that
behave like spherical harmonics with parity (—1)¢. To illustrate the effect of spa-
tial reflection, consider a single vector component s, = R(r)(sin)’sin (¢p — wt)
for some radial function R(r). Reflection along the z-axis changes ¢ to m — ¢ to
yield s’ = R(r)(sin0)*sin ({r — €¢ — wt). For odd integer (-values, this yields s/, =
R(r)(sin 0)’sin (¢ + wt), which has the same spin density at t = 0 but rotates in
the opposite direction. Rotation by 7 radians about the x-axis completes the parity
operation by changing the sign of ¢ to yield P(s,) = —R(r)(sin ) sin (¢ — wt). This
changes the sign of the spin for the same wave propagation direction, resulting in a
change in sign of electric charge according to Jehle’s model [64].

For even integer values of ¢, reflection along the z-axis yields s, =
—R(r)(sin0)"sin (£¢ + wt), and the complete parity operator yields the original
function P(s,) = R(r)(sin )" sin (¢ — wt).

Thus, it is plausible that particle-like vector waves with odd-integer orbital quan-
tum numbers have distinct mirror images, while particle-like waves with even-integer
orbital quantum numbers are their own mirror images. These mirror image wave func-
tions could play the role of antiparticles. This correspondence assumes that electric
charge is reversed upon spatial reflection, contrary to the usual assumption but con-
sistent with experiments such as beta decay of Cobalt-60, in which the mirror image
process can occur with antimatter but not with matter.

Since vector quantities are bilinear combinations of the bispinor wave functions,
the bispinors should transform under rotations with half the phase change of the vector
wave functions. Under our assumptions, elementary particle bispinor fields transform-
ing with half-integer orbital quantum numbers would have physically distinct mirror
images (antiparticles), whereas elementary particle bispinor fields transforming with
whole integer orbital quantum numbers would not have distinct mirror images. These
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results are consistent with the fact that all elementary fermions have distinct antipar-
ticles, and nearly all elementary bosons are their own antiparticles (an exception is the
pair W+ and W™, so the connection with spherical harmonics cannot apply to these).
This analysis classifies particles on the basis of internal orbital angular momentum
rather than spin angular momentum.

The model of the vacuum as an elastic solid also offers a good introduction to
general relativity. Gravity, at least when quasi-static, may be interpreted as ordinary
refraction of waves toward regions whose wave speed is decreased by the presence
of energy [67-69]. Wave speed in an elastic solid may likewise be decreased by
stress-induced compression (increased inertial density and decreased shear modulus).
Likewise, twisting a rubber band under constant tension tends to shorten it. The
increased density is associated with a decreased shear modulus according to the SCG
model of a solid under constant pressure [70].

5 Conclusions

Classical spin density waves in an ideal elastic solid are modeled by a nonlinear vec-
tor wave equation in which temporal changes of spin density are entirely attributable
to convection, rotation, and torque. A compatible nonlinear Dirac equation is also
derived. Operators for momentum and angular momentum densities are equivalent to
those of relativistic quantum mechanics. Vector plane wave solutions are expressed
using Dirac bispinors. The Hamiltonian is equal to the total energy, which is expressed
as a sum of rotational kinetic and potential energies. Rotational kinetic energy is
associated with rotation of the wave function with the medium, whereas rotational
potential energy is associated with wave propagation and rotation of wave veloc-
ity relative to the medium. Intrinsic momentum identical to that derived from the
Belinfante-Rosenfeld stress-energy tensor is the generator of translations correspond-
ing to a change of origin of displacements away from the equilibrium position. The
usual expression for electron rest energy corresponds to twice the conventional poten-
tial energy in the elastic solid model. In sum, waves in an ideal elastic solid provide
classical physics analogues for many physical properties of elementary particles.
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